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Abstract. Ambient Assisted Living (AAL) systems are becoming in-
creasingly important for providing personalised assistance in smart homes.
One key component for such systems is detecting and localising humans
in different areas of the home, which can enhance contextual information
to provide efficient support to the human user. Recent approaches often
lack interpretability and compromise user privacy.

This work introduces an interpretable, room-level human presence de-
tection system that relies solely on low-cost, privacy-conserving ambient
sensors typically used in smart homes. We have developed and evaluated
a solution for presence detection based on data collected from a single
participant in the Robot House, an ambient assisted living space at the
University of Hertfordshire. We developed two models to perform this
task, a Random Forest (RF) model and a more complex Long Short-
Term Memory (LSTM) model across a triad of test scenarios, including
full sensor set, sensor dropout and room dropout. We tested the per-
formance of both models using conventional train-test splits and on an
entirely unseen data to assess the generalisation. While LSTM achieved
comparable results, RF performed better on new, unseen data, with an
accuracy of 91.43% vs. 62.69% for RF and LSTM, respectively. The RF
also achieved comparative results against two state-of-the-art models,
HOOD and CSI-BiLSTM, with the advantages of being easy to interpret
and working better in situations where privacy and cost are important.
Overall, our work provides the basis for creating a scalable and inter-
pretable solution for finding a person’s location in smart homes.

Keywords: Assistive Technologies, Sensors, Smart Homes, Ambient As-

sisted Living, Virtual Wards

1 Introduction

Smart homes equipped with assistive technologies can support people, especially
older adults and individuals with special needs, through automation, enhancing
safety, improving energy management, and enabling personalised assisted living.
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A key component in this process is human presence detection to inform the sys-
tem where the user is and thus where to provide assistance [1]. This supports
vital capabilities in AAL including personalised assistance, context-driven inter-
ventions, and insights about human behaviours. There has been existing work on
this interesting and important area. Many approaches today use cameras, Blue-
tooth devices, Wireless Fidelity (Wi-Fi), and Channel State Information (CSI)
signals to detect the person’s exact location within the home. On top of that,
they have used deep learning methods for processing the data [2], [3], [4], [5],
which provide excellent baseline accuracy but are typically difficult for people to
interpret and trust and often do not work well in noisy real-world environments.

In contrast, ambient sensors such as motion, status, plug sensors, and pres-
sure mats are widely used in smart homes and AAL systems. Such sensors are
usually low-cost, privacy-preserving, and easy to install. However, they are often
overlooked for tasks such as human presence detection and localisation tasks [1].
The majority of previous works have utilised them for basic motion detection or
only binary presence detection for the entire home (simply identifying if some-
one is present at home or not, rather than detailed room-level information, i.e.,
determining which specific room a person is in). There is a gap in the literature
regarding their use for multi-room classification and generalisation to unseen
data [5], [3].

In this study, we have examined the use of such ambient sensors for indoor
human presence detection. We required a high-quality dataset that could ac-
curately capture fine-grained human movements and room transitions in a real
smart home. To the best of our knowledge, no publicly available dataset provides
the level of detail, annotation quality, and realistic multi-room coverage required
for this study. Therefore, we collected the data at the University of Hertford-
shire’s Robot House [6], a residential home dedicated to studies on human-robot
interaction. We have utilised the standard ambient sensors (e.g. motion, contact,
pressure, plug) already embedded in the smart home environment. In our data,
we ensured that every transition was recorded and labelled with high temporal
precision to help in robust training and evaluation under realistic conditions.
We created three experimental scenarios of room-level presence detection to see
if a simple sensor system can reliably detect room-level presence and work well
with unseen data. For these scenarios, we trained two separate models LSTM
and RF. We selected LSTM because it is widely used for sequence modelling
in sensor data, while RF was chosen for its interpretability and robustness to
class imbalance. Together, they let us compare a complex temporal model with a
lightweight, interpretable baseline. We evaluated the model’s performance in two
settings: an 80/20 offline train-test split on the primary data and a separate, un-
seen data. We found that RF not only performs just as well as LSTM on known
data, but it significantly outperforms LSTM in the generalisation scenario when
facing unknown data. Moreover, RF is easy to interpret, as some interpretations
are mentioned in Section 5. Based on these results, we suggest that RF is a better
choice for real-world deployment. Our key contributions show that a lightweight,
interpretable RF model using only standard ambient sensors achieved 99.15%
offline accuracy and maintained 91.43% accuracy on unseen data, outperforming
LSTM. Additionally, we also compared it to the state-of-the-art HOOD [3] and
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CSI-BiLSTM [5], showing that our approach does not require any new infras-
tructure, effectively handles a more fine-grained multi-class problem and still
performs well on new data.

The remaining sections of this paper are organised as follows. Section 2 re-
views literature on presence detection methods and highlights some of the re-
search gaps that we address in this paper. Section 3 describes our data collection
process, experimental environment, sensor infrastructure, and feature extraction.
Section 4 describes our evaluation scenarios and metrics. Section 5 describes
our recognition pipeline, training process, and evaluation methods. Section 6
presents experimental results, model generalisation on new data, and compar-
ison with state-of-the-art methods. Section 7 summarises our main findings,
potential real-world applications, and suggestions for future work.

2 Related Work

This section reviews existing technologies and methods for indoor human pres-
ence detection, highlighting their strengths, limitations, and the gap to be ad-
dressed. Real-time human presence detection has received significant attention
for a decade. For example, one approach uses infrared sensors with an adaptive k-
nearest neighbour (KNN) model for real-time human presence detection [7]. They
demonstrated effectiveness in controlled smart home scenarios; however, their
method faced challenges in handling false alarms and adapting to changing envi-
ronments, particularly in real-time scenarios. CO2 sensors have also been utilised
for indoor presence detection [8]. However, specialised equipment and sensitivity
to external factors such as ventilation and pet activity affect the performance.
The Inertial Measurement Unit (IMU) sensors embedded in smartphones and
smartwatches have been used to enhance human presence detection, localisation,
human activity recognition, and study biomechanics and movement patterns [9].
All of these methods have been tested in controlled laboratory environments
with static and offline training methods. In a notable work, Bidirectional Long
Short-Term Memory BiLSTM networks utilising Wi-Fi. CSI have been used for
real-time indoor human presence detection [5]. They demonstrated impressive
results with real-time tests, achieving an accuracy of 91.8% on training and test-
ing data, and 88.67% on unseen data collected under different room conditions.
Another notable real-time detection system, HOOD, has been introduced to de-
tect human presence and unusual (out-of-distribution) samples in real time [3].
Their notable contribution includes combining human presence detection with
OOD detection to classify scenes as ”presence” (human detected) or "no pres-
ence” (any non-human objects present). However, the focus was on static human
activities, such as standing or sitting and not on dynamic activities like moving
around the house. HOOD achieved an Area Under the Receiver Operating Char-
acteristic Curve (AUROC) of 95.71% for static activities and 93.02% for very
static, outperforming existing radar-based human presence detection methods
in all scenarios, with real-time capability validated in both offline and online
experiments. Such systems provide motivation and potential to build real-time
applications in dynamic environments for human presence detection.
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The literature shows that the majority of human presence and localisation
systems are tested in controlled environments and trained on offline, pre-recorded
datasets, limiting the validity of results in real-world applications [10], [11], [12].
In real-world deployment, variations in room layouts, furniture placement, and
environmental conditions can negatively impact system accuracy [10]. Privacy
concerns further add to the complication of techniques that rely on cameras,
smartphone sensors, or other intrusive data collection methods [13]. There is
still a need for real-time, lightweight, fine-grained, room-level location classifi-
cation, without invading user privacy. To address these challenges, our system
demonstrates how standard ambient sensors and interpretable models can de-
liver privacy-preserving, scalable, room-level presence detection that generalises
well to new data as well.

3 Data Collection

Since no available smart home dataset offered detailed information for multi-
room human presence detection with precise room transition labelling, we cre-
ated a new data with fully labelled room transitions under real-world conditions.
This section describes our data collection process, sensors, the floor plan of Robot
House [6], ground truth annotation and feature extraction techniques.

3.1 Sensors and Layout

This experiment was conducted with a single participant in the University of
Hertfordshire’s Robot House, where each room is equipped with ambient sensors.
These sensors include motion sensors, pressure mats, contact sensors (doors,
drawers, and toilet lid), plug monitors (microwave, kettle, and coffee machine),
and other environmental sensors (brightness and water flow). We used all of
these sensors in our data, since using only a single time-series motion sensor
is insufficient for accurate room-level presence detection. Motion sensors only
give on/off signals, so they often miss activities like sitting or sleeping. They
also struggle to distinguish between movement in nearby rooms, which creates
confusion. Together, the combination of these sensors provides a fuller picture
by detecting both movement and still activities. They also add context from
how objects are used, and reduce room overlap, leading to more accurate and
detailed presence detection. Room labels include kitchen, bedroom, bathroom,
corridor, upstairs, and living room (divided into sofa area and dining area).
Sensor distribution is shown in Table 1, and the layout of the Robot House is
given in Figure 1.

3.2 Ground Truth

Room-level ground truths were manually annotated using synchronised video
recordings. Videos were used solely for annotation, not for model input. We chose
manual annotation because we wanted to be as precise as possible, especially
when marking transitions between rooms. Automated methods were not a good
fit for this study since they are prone to errors and cannot be fully trusted.
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Figure 1: Real views of key areas in the Robot House and the corresponding
layout plan. Sensors are shown as colored icons placed at their respective loca-
tions. The borders between different areas are marked with colored lines, orange
lines mark corridor boundaries, and the blue dotted line shows the border be-
tween the dining and sofa areas.

Table 1: Sensor distribution by location
Location |Sensors
Corridor Motion and brightness
Bathroom |Motion and brightness, contact (door, toilet lid)
Bedroom  |Motion and brightness, pressure mat (bed), contact (door)
Dining Area|Motion and brightness
Kitchen Motion and brightness, power (microwave, kettle), contact (8 cup-
boards, fridge)
Sofa Area |Motion and brightness, pressure mat (5 seats), power (T'V)
Upstairs No sensors

3.3 Feature Extraction

Min-max scaling was used to adjust non-binary numerical values to the 0 to 1
range, so they are easy to interpret and avoid large-value dominance. Missing
values are filled using Forward fill (fill()), which fills the missing values with the
last known non-missing value. The total number of inputs was 76 and included
both sensor status and values.

4 Evaluation Scenarios and Criteria

This section describes the experimental scenarios designed to test our model’s
performance under various conditions. We tested and evaluated models across
three key conditions:
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1. Scenario 1: This scenario was to check robustness against the data with un-
derrepresented classes and contains all ambient sensor data from the ground
floor as well as the staircase, with 76 inputs and 7 location outputs.

2. Scenario 2: This scenario is designed to check the change in classification
performance when underrepresented rooms (corridor, upstairs) are excluded.
Therefore, we used reduced data that excludes the corridor and upstairs,
comprising 76 inputs and 5 location outputs.

3. Scenario 3: This was to check how performance holds when only minimal
sensor data is used. We evaluated it by using only motion sensor data. This
includes 12 inputs and 6 location outputs. Since the staircase does not have
a motion sensor, it was not included.

Both RF and LSTM were evaluated using accuracy, precision, recall, F1-
score, weighted and macro average of these evaluation measures, AUROC, and
confusion matrices.

5 Methodology

This section details the structure training process of our RF and LSTM models
for classifying room locations from sensor data. The dataset was split into train-
ing and testing sets using an 80/20 split. A separate, completely new dataset
was also used to check the model’s performance on unseen data.

5.1 RF Architecture and Training

RF was used to classify the location label. Since our data was imbalanced, it
was expected that RF would handle. Additionally, it is easy to interpret through
feature importance analysis [14].

In the parameter setting, we used 100 decision trees, with each tree limited
to a maximum depth of 10, with a minimum of 5 samples required to split an
internal node and each leaf node required at least 2 samples. Additionally, each
tree selected a random subset of features at each split, called feature bagging.
Since the total number of features is 76, the model randomly sampled a subset
of approximately 8 features (1/76) for every split. The LabelEncoder was ap-
plied to room labels. Each tree independently predicted an output, and the final
classification was determined by majority voting from all trees. Mathematically,
the final output can be written as

9 = mode (hy(z), ho(z), ..., hr(x)) (1)

Here, ¢ is the final predicted label. Each hi(z) is the output of the ¢-th decision
tree for the input z, and T is the total number of trees. The function mode(-)
returns the most common prediction among all trees. The RF model was trained
for 2.78 seconds with a data size of 65,920 samples. It took approximately 14.14
seconds in total (including cross-validation and inference time), on an Intel Core
i7 (x86.64) CPU setup.
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5.2 LSTM Architecture and Training

We implemented LSTM classifier using TensorFlow.keras to model temporal pat-
terns and long-term dependencies [15], and to compare against the simpler but
interpretable RF. We first standardised and reshaped the data into a 3D format
(samples, timesteps, features). The model has two LSTM layers with 64 and
32 units (Neurons), followed by a dropout layer and a softmax output layer for
multi-class classification. The final layer predicted the room using softmax. We
used categorical cross-entropy loss with the Adam optimiser. Numerical features
were scaled with StandardScaler, and location labels were one-hot encoded after
LabelEncoding. The LSTM model was trained for 20 epochs with a batch size
of 32 and a data size of 65,920 samples, resulting in a total training time of
approximately 2 minutes and 2 seconds on an Intel Core i7 (x86-64) CPU setup.

Time per epoch: ~ 6s (excluding the first epochwhich took ~ 8s due to
startup overhead)
Total time: ~ 8s+ (19 x 65)

= 122s ~ 2minutes and 2 seconds

(2)

6 Results and Discussion

This section compares the performance of RF and LSTM models on standard
and unseen data, as described in Section 4.

6.1 Comparative Analysis of RF and LSTM on Standard Train/Test
Split

We evaluated RF and LSTM on three distinct use cases as mentioned in Sec-
tion 4, each differing in sensor selection and location strategies. Detailed perfor-
mance metrics are shown in Table 2.

Scenario 1 — All Sensors and All Locations: RF achieved 95% accuracy, but
failed to detect ”Upstairs” (Fl-score = 0). It also confused the corridor with
the kitchen and dining room. In contrast, LSTM achieved better results, with
an overall 99% accuracy and higher F1 scores for all rooms, including under-
represented classes like ” Upstairs”, showing better handling of underrepresented
classes.

Scenario 2 — All Sensors and FExcluded Sparse Locations: With sparse locations
excluded, RF achieved strong class separation, with 99.15% accuracy, and macro
and weighted F1 were 0.99. There were very few misclassifications, mostly be-
tween areas that were close to each other (like the Sofa and dining areas). LSTM
also performed similarly well, with over 99% accuracy. It indicates that when
the class instances are balanced and well-covered by sensors, both models can
work very well.
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Scenario 8 — Motion Sensors Only with One room out: RF accuracy dropped to
78.98%, with high confusion between shared spaces, like the corridor and dining.
LSTM performed better with 87.0% accuracy, showing improved separation
between overlapping classes. Both models performed poorly in the bathroom,
potentially due to limited sensor input and slight irregularities in motion pat-
terns.

6.2 Comparative Analysis of RF and LSTM for Generalisation on
Unseen Data

We further evaluated both models on fully unseen data to assess the generalisa-
tion beyond the training distribution and to observe robustness under semi-real-
world deployment conditions. Results are shown in Figure 2 and 3 and Table
3.

Scenario 1 — All Sensors and All Locations: RF reached 91.4% overall accuracy
and a Weighted F1 score of 0.92, showing a strong generalisation, particularly for
bedroom, kitchen, and sofa area classes; however, it struggled with unbalanced
data, entirely failing for the Upstairs class, with F1 = 0.00. LSTM showed a
significant drop, achieving only 62.7% overall accuracy, with a weighted F1 score
of 0.64. It overfits the bathroom with a recall = 1.00, but precision is 0.18, and
it also fails to generalise to the dining area and kitchen. Overall, RF shows far
superior generalisation, LSTM suffers from overfitting and is unreliable under
temporal variation.

Scenario 2 — All Sensors and Ezxcluded Sparse Locations: RF again performed
well with 90.5% accuracy and a Weighted F1 score of 0.89, struggling with the
corridor class only. LSTM dropped to 53.5% accuracy and a Weighted F1 score
of 0.54, and the sofa area and the corridor were completely misclassified. Again,
RF showed more stable generalisation.

Scenario 8 — Motion Sensors Only with One room out: RF still worked decently
with overall 82.0% accuracy and a Weighted F1 score of 0.80. The strongest class
was the kitchen, and the bathroom and the corridor were misclassified the most.
LSTM dropped to accuracy of 42.6% and a Weighted F1 score 0.43. It overpre-
dicted the corridor and dining area, showing poor separation. Table 3 shows a
comparison of the accuracy and weighted F-1 score of both models on unseen
data. It can be concluded from generalisation testing that in a sensor-constrained
setting, RF remains usable and has clear class separation, while LSTM perfor-
mance collapses completely. RF performance was slightly reduced from training,
but it remained resilient and balanced. Figure 2 and 3 show confusion matrices
of generalisation for both models across all scenarios.
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Figure 2: Confusion Matrix: RF for Generalisation on Unseen Data
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Figure 3: Confusion Matrix: LSTM for Generalisation on Unseen Data

Table 2: Comparison of RF and LSTM on Testing and Training Data

Model|Scenario |Accuracy|Weighted F1 Score
Scenario 1| 95.00% 0.94

RF Scenario 2| 99.15% 0.99
Scenario 3| 78.98% 0.79
Scenario 1| 99.00% 0.99

LSTM |Scenario 2| 99.25% 0.99
Scenario 3| 87.00% 0.87

Table 3: Model performance for generalisation on unseen data

Model|Scenario |Accuracy|Weighted F1 Score
Scenario 1| 91.43% 0.9189

RF Scenario 2| 90.53% 0.8939
Scenario 3| 82.04% 0.7955
Scenario 1| 62.69% 0.6351

LSTM |Scenario 2| 53.51% 0.5370
Scenario 3| 42.56% 0.4303

6.3 Comparative Analysis of RF with Previous Studies

We compared our results against two recent robust presence detection frame-
works: CSI-BiLSTM [5] and HOOD [3]. The comparison focuses on generalisation
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Table 4: Comparison of Proposed Work with CSI-BiLSTM [5]
Aspect Proposed Work (Ambient Sen-|CSI-BiLSTM (Wi-Fi CSI)

sors)

(Generalisation)

Testing Accuracy (20%|Scenario 1: 95.00%, 91.68%
test split from training|Scenario 2: 99.15%

data)

Unseen Data Accuracy |Scenario 1: 91.43%, 88.67%

Scenario 2: 90.53%

Detection Task

Room-level multi-class classifica-

tion

Binary presence detection

Sensor Type

Ambient sensors (motion, contact,
pressure, plug)

Wi-Fi CSI (2.4 GHz, ESP32)

Output Type

Room label (5-7 classes)

Presence (binary)

Hardware Require-|None beyond ambient sensor net-|ESP32 Wi-Fi modules, Raspberry
ments work Pi
Interpretability High (feature importance, decision|Moderate (sequence deep learning)

trees)

Privacy Level

High (non-intrusive, no radio fre-
quency or video)

Moderate
sensing)

(radio frequency-based

Use Case Suitability

AAL, smart homes,
context

fine-grained

Indoor occupancy tracking,
intrusive

non-

to unseen data, which is crucial for the real-world deployment of such a system.
Tables 4 and 5 give a summary of the comparison, and it can be seen that our
RF approach offers better accuracy while being more efficient and lightweight.
The CSI-BiLSTM model uses bidirectional LSTM networks to classify the pres-
ence or absence of Wi-Fi CSI time series. It achieved 91.68% accuracy on 20%
test segment of data from the overall training and testing data, and 88.67% on
an unseen file containing data under different room conditions. But it supports
only binary presence detection and requires ESP32 hardware, which is becoming
harder to find on newer Wi-Fi chips. Our model obtained 95.00% and 91.43%
accuracy on 20% test segment of the training data and the unseen file, respec-
tively, for scenario 1. For scenario 2, it achieved 99.15% and 90.53% accuracy,
respectively, for the same setting of testing and unseen files.

The HOOD system [3] uses FMCW radar for binary presence detection and
sets a high benchmark with an average of 93.71% for static (standing humans)
and 93.02% for very static (lying and sitting humans) activities. The constraints
of special FMCW radar hardware and built-in signal processing make it harder
to use in low-cost or limited-resource smart homes. In contrast, our chosen RF
model performance achieved comparable AUROC while handling more granular
room-level classification and dynamic activities, as can be seen in Tables 2 and
3. Details of per-class AUROC are provided in Table 6. Our model generalises
well on unseen data with 91.43% accuracy and up to 0.99% AUROC, requires no
additional hardware, and supports interpretable, fine-grained room-level classi-
fication, making it a good baseline for further testing for deployment in smart
homes.

»_»

Table 6: AUROC per class (one-vs-rest) for Scenario 1 and Scenario 2.
indicates the class was not evaluated in that scenario.
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Table 5: Comparison of Proposed Work with HOOD (3]
Aspect Proposed Work (Ambient Sen- HOOD (FMCW Radar)
sors)
Detection Task Room-level multi-class classifica-| Room-level binary classification

tion (5-7 classes)

(presence vs. absence)

Sensor Type

Ambient sensors (motion, contact,
pressure, plug)

FMCW radar

Activity in

Dataset

Types

Mixture of static and dynamic ac-
tivities (e.g., cooking, walking, sit-
ting, resting, watching TV, using
toilet)

Static and very static activities only

Output Type

Room label per instance (multi-
class)

Binary presence detection per room

AUROC
Split)

(Train-Test

Scenario 1: 0.9991 (macro avg)
Scenario 2: 0.9998 (macro avg)
(Includes both static and dynamic
activities)

Static: 95.71

Very Static: 93.02

(Binary classification on static ac-
tivities only)

AUROC (Unseen File)

Scenario 1: 0.9981 (macro avg)
Scenario 2: 0.9984 (macro avg)

Not reported

Hardware Require-|No additional hardware; uses exist-| Requires FMCW radar deployment
ments ing ambient sensors and multiple units for coverage
Interpretability High (feature importance, decision|Low (deep neural networks, limited

trees from RF)

transparency)

Privacy Level

High (non-intrusive, no video or ra-
dio frequency imaging)

Moderate (senses micro-movements
via radar waves)

Use Case Suitability

Highly suitable for AAL, smart

homes, scalable deployments

Effective in static detection, but
harder to scale due to hardware cost
and setup complexity

Class Scenario 1 Scenario 2
Bathroom 0.9992 1.0000
Bedroom 0.9998 1.0000
Corridor 0.9990 -
Diningarea 0.9952 0.9993
Kitchen 0.9985 0.9999
Sofaarea 0.9986 0.9997
Upstairs 0.9895 -

7 Conclusion and Future Work

This study shows that standard ambient sensors in smart homes can support
an interpretable room-level presence detection. Our RF classifier effectively clas-
sified locations with 99.15% accuracy offline and 91.43% on unseen data, out-
performing LSTM and exceeding state-of-the-art work like HOOD and CSI-
BiLSTM, all without requiring additional hardware. These results confirm that
our lightweight, interpretable and privacy-aware approach holds potential for
real-world deployment for indoor human presence detection. However, there are
still some limitations and areas for improvement. To improve generalisation, fu-
ture work will explore methods like synthetic data generation or transfer learning
to include all underrepresented classes (”upstairs” and ”corridor” in our case).
Additionally, the model needs to be tested in different homes and furniture lay-
outs, as well as with multiple participants, to evaluate its adaptability to diverse
home environments and conditions. Overall, this work contributes as a scalable
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and interpretable baseline for room-level presence detection in smart homes and
sets the stage for more generalisable and accessible AAL solutions.
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