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Abstract. As social robots become integral to daily life, effective bat-
tery management and personalized user interactions are crucial. We em-
ployed Q-learning with the Miro-E robot for balancing self-sustained
energy management and personalized user engagement. Based on our
approach, we anticipate that the robot will learn when to approach the
charging dock and adapt interactions according to individual user pref-
erences. For energy management, the robot underwent iterative training
in a simulated environment, where it could opt to either "play" or "go
to the charging dock". The robot also adapts its interaction style to a
specific individual, learning which of three actions would be preferred
based on feedback it would receive during real-world human-robot inter-
actions. From an initial analysis, we identified a specific point at which
the Q values are inverted, indicating the robot’s potential establishment
of a battery threshold that triggers its decision to head to the charg-
ing dock in the energy management scenario. Moreover, by monitoring
the probability of the robot selecting specific behaviours during human-
robot interactions over time, we expect to gather evidence that the robot
can successfully tailor its interactions to individual users in the realm of
personalized engagement.

Keywords: Personalized interaction · Companion robots · Battery Man-
agement · Reinforcement learning

1 Introduction

As social robots become more and more integrated into everyday human life,
their handling becomes an increasingly complex issue. One of the most impor-
tant aspects to consider is managing the robots’ battery life[5]. Especially during
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long-term human-robot interactions (HRIs), it would be cumbersome for users
to continually monitor their robots’ battery status to send them to the charging
dock when the battery is close to depletion. Furthermore, robot adaption to user
preference is certainly a key element of long-term interactions between humans
and robots[7]. Hence, it would be beneficial if a robot could autonomously navi-
gate to its charging dock and replenish its battery at an optimal time determined
by its own algorithms, considering social interaction. At the same time, it would
be advantageous if home robots could tailor their interactions to individual users,
enhancing their utility and user experience.

In this paper, we present approaches that employ Q-learning [16] to com-
bine both these aspects. The primary contributions of this paper include (1)
determining the optimal timing for the robot to approach the charging dock
using Q-learning in a simulated environment; and (2) enabling the robot to
adapt to individual users over time during human-robot interactions by leverag-
ing Q-learning with a real Miro-E robot. For that, we first present some existing
approaches to battery management and personalized user engagement in Sec-
tion 2 and introduce theoretical backgrounds about Q-learning in Section 3.
After that, we present our method by describing our own implementation of
Q-learning for self-sustained energy management and personalised user engage-
ment in Section 4. We further provide an initial proof of concept of our approach
in Section 5 before concluding the paper.

2 Background

In the field of battery management, a diverse range of methodologies have been
established. Some approaches do not incorporate learning but rely on estimation
functions [4], or model predictive control [10]. Many others instead [1,3,12,8] used
strategies involving energy storage and decision-making frameworks using some
form of reinforcement learning, allowing for dealing with uncertainties effectively.
Likewise, our approach is based on a form of reinforcement learning (Q-learning,
c.f. Section 3).

To personalize and adapt a robot’s user engagement, frameworks have been
proposed by [9], while [6] have presented designs, implementations, and assess-
ments for socially assistive robots. [9] allows robots to understand children with
ASD’s emotions using physiological signals, while [6] motivates elderly users to
exercise via a vision-equipped robot. However, the adaptation techniques vary.
[9] utilizes random phrase selections during exercises to avoid repetitiveness,
while [6] employs Support Vector Machine (SVM)-based modelling to interpret
children with autism’s physiological signals. The work presented here combines
such reinforcement learning-based behavioural adaption systems (e.g. [11,14])
with reinforcement-based solutions for autonomous battery management.

Our approach extends our previous work [2] in which we effectively utilized
Q-learning for "Energy Autonomy" and "User’s Preferences" in a study involving
an early version of the Aibo robot4. There, we demonstrated a robot that could
4 See: https://electronics.sony.com/more/c/aibo
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operate for extended periods without depleting its energy source and had suc-
cessfully learned an effective policy for engaging users through real-world inter-
actions. Current work follows up on this study, replicating the original methods
using a modern Miro-E5 robot. Additionally, we have expanded and improved
some methodological aspects of the original work, c.f. Section 4.

3 Theory

In this section, we will briefly introduce the theoretical background to the learn-
ing algorithm used in this work. Specifically, we discuss Q-learning [16], the
epsilon-greedy [13], and the softmax [15] policies, which we consider in our im-
plementation. The goal of Q-learning is to find optimal Q values, q∗, which means
to find an optimal policy π∗ as the policy π(a|s) that maximizes the expected to-
tal reward from a given state. Q values are a measure of the expected return after
taking a specific action in a specific state with a particular policy. The learned
Q values directly approximate q∗, independent of the policy being followed [13]
because Q-learning is an off-policy algorithm and its updates always reflect the
maximum expected reward. This specifically enables early convergence of a cho-
sen policy and the target policy can be deterministic, while the behaviour policy
can continue to sample all possible actions [13]. Therefore, Q-learning is a simple
way for agents to learn how to act optimally in controlled Markovian domains as
articulated by Christopher[16]. The update for Q-learning is defined as follows:

Q(St, At)← Q(St, At) + α(Rt+1 + γmax
a

Q(St+1, a)−Q(St, At)) (1)

In off-policy algorithms, the policy used to generate behaviour called the be-
haviour policy, may in fact be unrelated to the policy that is evaluated and
improved, called the target policy. The Q-learning updates its Q-values to align
with the optimal (or "target") policy. However, while the behaviour policy could
in theory be any policy, it should be soft (i.e. it should consider all actions in all
states with nonzero probability) in order to explore all possibilities [13].

In reinforcement learning, maintaining an appropriate balance between ex-
ploration and exploitation is a crucial aspect. A simple yet effective strategy
for managing the exploration-exploitation trade-off is the epsilon-greedy action
selection mechanism [13]. With this approach, the agent selects an action that
maximizes its Q-value for a given state with a probability of 1 − epsilon and
chooses an action randomly with a probability of epsilon. The epsilon-greedy
policy treats the selection probability of all non-greedy actions equally, thereby
neglecting the estimated Q-values for these actions.

However, softmax [15] uses action-selection probabilities which are deter-
mined by ranking the Q-value estimates using a Boltzmann distribution. In prac-
tical applications, to prevent overflow and ensure numerical stability, τ denotes

5 See: https://miro-e.com/robot

https://miro-e.com/robot
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a positive parameter known as the ’temperature’:

π(a|s) = Pr{at = a|st = s} = e
Q(s,a)−maxb Q(s,b)

τ∑
b e

Q(s,b)
τ

(2)

4 Method

In this section, we describe our implementation of Q-learning on the Miro-E
robot to allow for self-sustained energy management and personalized user en-
gagement. The goal of self-sustained energy management is to determine an
optimal threshold for charging, thus enabling Miro-E to engage in extended
periods of interaction for enhanced human-robot interaction. To this end, we
extended the original approach with a negative reward system [2], which en-
courages Miro-E to engage in play and discourages battery depletion at the
same time. In addition to the original approach [2], where the state dimension
was one-dimensional, we introduced an additional dimension called "people’s
faces" in personalized user engagement. This addition is anticipated to facilitate
more personalized interactions and provide flexibility in the learning process.
By making these modifications to the original work, we aim to develop a robot
that optimizes battery use and potentially offers personalized features for each
user. To efficiently facilitate the training of self-sustained energy management
in simulation and trial user engagement in the real world, this work addresses
both aspects individually.

4.1 Self-sustained energy management

A robot must visit the battery charging dock to maintain autonomous movement.
Ideally, it should be able to play around in a room for extended periods and
approach the charging dock with optimal timing. To achieve this autonomous
behaviour and expedite convergence as compared to on-policy learning methods
such as SARSA [13], we employed Q-learning in a simulation environment.

Q-learning implementation For learning self-sustained energy management,
we implemented an epsilon-greedy policy for the selection of actions to allow
Miro-E to determine action probabilities based on epsilon, independent of Q
values, which are updated to maximize the next Q value in Q-learning. We
configured the reinforcement learning parameters as follows:

– State space (two-dimensional Q-table): "charging" or "playing", the battery
level is divided into levels ranging from 6 (fully charged) to 0 (nearly empty).
We designed this two-dimensional state space to enable Miro-E to select its
next action based on its current engagement and battery level.

– Initial state: when the first dimension of the state space is "playing" and the
second dimension (the battery level) is 6 (fully charged).
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– Terminal state: either when the first dimension of the state space is "playing"
and the second dimension (the battery level) reaches 0, or when the steps
within a single episode reach 500.

– Action space: "play" or "go to charging dock".
– Reward: a reward of +100 is provided when Miro-E opts to play to incentivise

longer playtime, and a reward of -100 is given when the robot decides to
proceed to the charging dock to discourage unnecessary returns. If Miro-E
depletes its battery, a penalty is assessed that is 100 times the number of
steps taken, with this counter resetting once Miro-E returns to the charging
dock. We have chosen this penalty structure to prevent the battery from
running out, ensuring that the penalty magnitude exceeds the reward value
associated with choosing to play.

Evaluation environment We used a simulation environment to determine
whether the robot can change its behaviour from engaging a user to going to
a virtual charging location using the above implementation. Figure 1a depicts
the moment when Miro-E is playing while Figure 1b captures the moment when
Miro-E is moving to a predetermined position. We configured the following pa-
rameters for the Q-learning algorithm in the simulation: Learning rate at 0.1,
Discount factor at 0.9, Initial epsilon for the epsilon-greedy method set to 0.3,
Epsilon discount rate of 0.99, the maximum number of steps set to 500, and a
total of 200 episodes.

(a) example of "play" action
(b) example of "going to dock" ac-
tion

Fig. 1: Examples of Miro-E actions in simulation.

4.2 Personalized engagement

Individual preferences for behaviour vary and consequently, a robot should adapt
to the specific person it is interacting with. To achieve this, we also employed
Q-learning. In our use case, the robot interacted with an actual person in the
real world, as it needs to adapt to existing individuals. We introduced a novel
element to facilitate personalized engagement. Specifically, we enabled the robot
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to recognize a human face, allowing the robot to adapt to the specific preferences
of the identified individuals. In the following section, we describe the implemen-
tation of Q-learning and outline the experimental setup and procedure.

Q-learning implementation For personalizing user engagement, we imple-
mented a softmax policy for the selection of actions, allowing Miro-E to deter-
mine action probabilities based on their corresponding Q-values and to ensure
that actions have a nonzero probability of being selected during an interaction.
Additionally, our updating strategy aims to facilitate dramatic changes in Q
values compared to on-policy methods like SARSA [13] to allow for faster user
adaptation. We configured the reinforcement learning parameters as follows:

– State space (two-dimensional Q-table): the person’s face, "tracking a ball",
"responding to sound", "detecting a person’s face" or a state of inactivity.

– Initial state: when the robot is not engaged in any actions.
– Terminal state: when the user sends a signal.
– Action space: "track a ball," "respond to sound," "detect a person’s face".
– Reward: a reward of +10 when a person pats Miro-E on its head, indicating

a preferred action, while no rewards are given for other actions.

Evaluation environment To evaluate our approach, we implemented an in-
teractive learning routine using a real Miro-E robot as follows: At the beginning
of each episode, the first state dimension is determined by recognizing a pre-
registered person’s face. Then, one of the actions is selected using the softmax
method and executed.

Fig. 2: Behaviour flow of Miro’s interactive training routine.

If a reward is given by the user, the Q-value is updated and the subsequent
action is chosen. If not, the next action is determined. If the user signals they
want more adaptive actions by patting Miro-E on its body, the temperature



Reinforcement Learning for Self-Sustained Personal Robots 7

parameter is adjusted by multiplying it with the discount factor before select-
ing the next action. Figure 2 summarises the interactive training steps for the
behaviour adaption. We configured the following parameters for the Q-learning
algorithm in the real world: learning rate at 0.5, discount factor at 0.9, initial
temperature for the softmax method set to 100, and temperature discount rate
of 0.9.

5 Proof of Concept

To determine whether our approach can function, we tested the energy manage-
ment routine and the behaviour adaption separately. Firstly, we tested whether
we could find a valid timing for the robot to approach the charging dock and
secondly, whether the robot would adapt its behaviour to a user over time.

5.1 Self-sustained energy management

Fig. 3: Q value: Motion state "playing".

The objective of the first evaluation was to identify the optimal battery
threshold that would enable the Miro-E robot to operate for extended periods.
For that, we have investigated how the Q-values change when the motion state
of the robot is "playing". Figure 3 illustrates that when the Miro-E robot was in
a "playing" state, the Q-value for "play" exceeded the Q-value for "go to dock"
until the battery level dropped between 2 and 1. Beyond this point, the Q-values
inverted, indicating that "go to dock" became the more valued action. Based on
the results, the optimal battery threshold appears to be between a battery level
of 2 and 1. More precisely, the voltage corresponding to this threshold is 4.4 V,
suggesting that the identified threshold is approximately 4.4 V.
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5.2 Personalized engagement

The second part of our evaluation looks at whether Miro-E would adapt its
behaviour during an interaction. For that, we provided the system with different
rewards in a test run lasting for approximately 60 minutes. Figures 4a and 4b
depict the Q-values at episodes 10 (3̃0 minutes) and 18 (6̃0 minutes), respectively,
while Figures 4c and 4d show the probabilities of selecting each action at the same
episodes and corresponding times, which show that the probabilities associated
with each action evolve over time, indicating Miro-E’s adaptation to a specific
person’s preferences. Consequently, Miro-E likely selects "respond to sound"
following actions "detect a person’s face" and "track a ball". Additionally, "track
a ball" is probably chosen after "respond to sound" or at the episode’s outset.

(a) Q-values in ep. 10 (b) Q-values in ep. 18

(c) Probability of each action in ep. 10 (d) Probability of each action in ep. 18

Fig. 4: Test run: Q-values and action probabilities in some example episodes.

Miro-E chose actions using the softmax formula outlined in Equation 2. The
temperature parameter was adjusted throughout each episode, especially when
the user signaled a desire for more adaptive interactions by patting Miro-E.
Initially, Q-values had minimal influence on action choices due to a high tem-
perature parameter. But as episodes advanced and the temperature decreased,
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the influence of Q-values on action selection grew stronger. This behaviour is ev-
ident in Figure 4, which displays results for one person with the first state space
dimension set to "1", Motion State "3" in Figures 4a and 4b showing Miro-
E inactive at the beginning of an episode. Here, Q(13, 0) remains unchanged
between episodes 10 and 18. However, in Figures 4c and 4d, despite static Q
values, there’s a growing difference in the likelihood of Miro-E choosing "track a
ball" and "respond to sound over "detect a person’s face". This suggests Miro-
E gradually refines interactions based on both exploring user preferences and
leveraging past experiences.

Its adaptability to changing user preferences was enhanced by Q-learning.
The Q-learning formula (Equation 1) ensures that if an action was rewarded, the
related Q value would adjust to improve future rewards. This could mean large
increases in Q values for less-favored actions, thereby increasing their chances of
selection and allowing Miro-E to quickly modify its interactions. Rapid changes
in Q values across episodes can be observed, for instance, between episodes 9 and
10 in Figures 5a and 5b. Notably, the test run depicted in Figure 5 is unrelated
to that in Figure 4. Q values, such as Q(10,2), Q(11,2), and Q(13,2) exhibited
significant changes within the span of just one episode.

(a) Q values in episode 9 (b) Q values in episode 10

Fig. 5: Q values in episodes 9 and 10 during the second test run.

6 Conclusion

In this paper, we utilized Q-learning with the Miro-E robot to successfully at-
tain self-sustained energy management and personalized engagement. For self-
sustained energy management, we showed that the robot could determine the
optimal timing for approaching the charging dock in a simulated environment.
For personalized engagement, we anticipate that our method will adeptly adapt
the robot’s interactions over time to meet the preferences of an individual user
during human-robot interactions.



10 K. Fujii et al.

Our future work is to evaluate these algorithms in an interactive trial involv-
ing different individuals with free choices of interaction, as offered by Miro-E
and implemented additionally. Moreover, we consider the expansion of the state
space, e.g. introducing an idling state to the self-sustained energy management
component.
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