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ABSTRACT2

This paper summarizes the structure and findings from the first Workshop on Troubles and3

Failures in Conversations between Humans and Robots. The workshop was organized to4

bring together a small, interdisciplinary group of researchers working on miscommunication5

from two complementary perspectives. One group of technology-oriented researchers was6

made up of roboticists, Human-Robot Interaction (HRI) researchers and dialogue system7

experts. The second group involved experts from conversation analysis, cognitive science,8

and linguistics. Uniting both groups of researchers is the belief that communication failures9

between humans and machines need to be taken seriously and that a systematic analysis10

of such failures may open fruitful avenues in research beyond current practices to improve11

such systems, including both speech-centric and multimodal interfaces. This workshop12

represents a starting point for this endeavour. The aim of the workshop was threefold:13

Firstly, to establish an interdisciplinary network of researchers that share a common interest14

in investigating communicative failures with a particular view towards robotic speech15

interfaces; secondly, to gain a partial overview of the “failure landscape” as experienced16

by roboticists and HRI researchers; and thirdly, to determine the potential for creating a17

robotic benchmark scenario for testing future speech interfaces with respect to the identified18

failures. The present article summarizes both the ”failure landscape” surveyed during the19

workshop as well as the outcomes of the attempt to define a benchmark scenario.20

Keywords: human-robot interaction, speech interfaces, dialogue systems, multi-modal interaction, communicative failure,21

repair22

1 INTRODUCTION

Speech interfaces, user interfaces that allow interaction with technology through spoken commands23

or queries, are commonplace in many types of robots and robotic applications. Despite the progress24

in speech recognition and many other areas of natural language processing in recent years, failures of25

speech interfaces in robotic scenarios are numerous, especially in real-world situations (Porcheron26

et al., 2018; Fischer et al., 2019). In contrast to the common experience of failure of speech interfaces27

in robotics, the literature is positively skewed towards the success and good performance of these.28

While Marge et al. (2022) identified key scientific and engineering advances needed to enable29

effective spoken language interaction with robotics; little attention was given to communicative30

failures. To our knowledge, the documentation of failure in speech interfaces and systematic studies31

of such failures and their causes is exceedingly rare. Honig and Oron-Gilad (2018) provides the32

most in-depth literature review of prior failure-related HRI studies. The authors found that research33

in HRI has focused mostly on technical failures, with few studies focusing on human errors, many34

of which are likely to fall under the umbrella of conversational failures. In addition to this focus on35

technical errors, the majority of failure-related studies in HRI take place in controlled experimental36
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conditions, where ‘failures’ are explicitly designed and occur only at specific moments (Ragni37

et al., 2016; Washburn et al., 2020a; Cuadra et al., 2021; Green et al., 2022), instead of a natural38

occurrence of the interactions between humans and robots. Closer to the topic of the workshop is39

the recently proposed taxonomy of Tian and Oviatt (2021) that focuses on social errors in HRI and40

their relationship with the perceived socio-affective competence of a robot. However, while there is41

significant overlap between social errors, as categorized by Tian and Oviatt, and the workshop topic42

of conversational failure, the perspective on the role of these errors and failures in interaction as43

well as the view as to whether these could be overcome eventually differs significantly. While social44

errors should ultimately be reduced by increasing a robot’s perceived socio-affective competence, it45

appears unlikely that conversational failure could be totally extinguished by means of technological46

progress. Too frequent is their occurrence in human-human conversation and too deeply ingrained47

are the related repair mechanisms in the fabric of human communication.48

To the best of our knowledge, there are currently no survey papers specifically on conversational49

failures in human-robot interaction, a fact that illustrates an important gap in the research landscape.50

To address this gap, we conducted a two-phase workshop with experts in adjacent fields. This paper51

presents the findings from this workshop series that brought together a multidisciplinary group of52

researchers from fields such as robotics, human-robot interaction (HRI), natural language processing53

(NLP), conversation analysis, linguistics and pragmatics. The workshop provided a platform to54

discuss the multitude of failures of speech interfaces openly and to point out fruitful directions for55

overcoming these failures systematically. The workshop focused mainly on human-robot joint action56

scenarios involving multimodal coordination between humans and robots, as these are the norm in57

scenarios where robotic speech interfaces are deployed. The identified types of failures range from58

failures of speech recognition to pragmatic failures and infelicities.59

We begin by describing the aims, structure, and materials used in the workshop in Sect. 2. We then60

present findings that result from the workshop, including participant contributions and outcomes of61

the structured discussion in Sect. 3. This leads to Sect. 4, where we reflect on problems and identify62

themes that emerged from the workshop’s discussions before concluding the paper.63

2 MATERIALS AND METHODS

The Working with Troubles and Failures (WTF) in Conversations between Humans and Robots64

workshop included a virtual gathering over two consecutive days in June 2022 and an in-person65

full-day meeting at the University of Hertfordshire in September 2022. Here, we sketch the structure66

and summarize the findings for each of these parts.67
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2.1 Before the Workshop68

In order to attract workshop participants interested in an open discussion of their experience and69

investigations of failing speech interfaces, we directly contacted some of the potentially interested70

research groups within the United Kingdom. Additionally, the workshop was advertised via mailing71

lists relevant to the HRI (e.g. hri-announcement, robotics-worldwide, euRobotics-dist), natural72

language processing (NLP, e.g. ACM sigsem), and artificial intelligence communities (e.g. ACM73

sigai-announce). To verify participants’ genuine interest in the topic and to collate information on74

the different types of conversational failures experienced by them, they were asked to submit the75

following pieces of information:76

1. the number of years of experience using or developing speech interfaces,77

2. an indication of what they perceive to be the most pressing issue or the biggest source of failure78

for speech interfaces,79

3. their most memorable WTF moment, that is, which of their experiences of failure with a speech80

interface they remembered most vividly,81

4. a summary of their motivation to attend the workshop,82

5. a suggestion for a future benchmark scenario that would expose the kind of failure described in83

their WTF moment.84

Applicants that stated a meaningful entry for item 4, and made some attempt to answer the other85

questions, were admitted to the workshop. As a result, 15 participants were admitted and initially86

attended the virtual part. Of these fifteen participants, eight would go on to attend the face-to-87

face part of the workshop. The face-to-face workshop was re-advertised via the above-mentioned88

mailing lists and the same set of questions and answers was used to filter out additional prospective89

participants. Ultimately, six new participants joined the face-to-face part of the workshop, resulting90

in fourteen non-speaker, non-organiser participants. Two of these attended the face-to-face workshop91

virtually, as we decided to go for a hybrid format in order not to exclude anyone who was not able92

or willing to travel on site.93

Keynote speakers for both parts of the workshop were chosen based on their expertise in the94

subject area. The subject areas considered most relevant to the workshop were robotics-centred NLP95

on the one hand and Conversation Analysis (CA) on the other. The emphasis on CA was based on96

the fact that the documentation and analysis of conversational failure have been an integral part97

of this discipline since its very inception. Moreover, it was hoped that having keynote speakers98

and participants from both areas would soften discipline-specific boundaries and limitations and99

potentially open up new directions for future research.100
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2.1.1 Motivations for Attending the Workshop101

The following is a summary of the participants’ motivation for attending the workshop as extracted102

from the application forms:103

Several PhD students were hoping to connect and network with other researchers working in speech104

interaction technologies. Multiple other researchers working on the CA-HRI interface wanted to105

learn more about how conversational trouble emerges, while others occupied with developing speech106

interfaces, or with integrating these into robots were interested in gaining a deeper understanding of107

current issues. Many of them were also interested in sharing their experiences with peers.108

One researcher working in animal communication hoped to learn something from a different domain109

of ”inter-being communication”, while yet another researcher working on speech privacy wanted110

to connect to other researchers working on speech interfaces. One participant saw value in the aim111

of identifying or creating a benchmark scenario that would be able to tease out the most common112

failures, if they occurred - an aim explicitly set out by the workshop.113

Another motivation of multiple participants to attend the workshop was their shared belief that a114

deeper analysis of communicative failures would not only help to improve future speech interfaces115

but also gain a deeper understanding of (human) conversations themselves.116

Finally, a researcher interested in explainable AI was interested to see what other types of failures,117

apart from faulty explanations, there are and how these may connect to research in explainable AI.118

2.2 Virtual Workshop119

To facilitate participation in the virtual session of the workshop, it was divided into two half-day120

events. On the first day, the workshop opened with a keynote talk by Prof. Patrick Healey, Professor121

of Human Interaction and Head of the Cognitive Science Research Group in the School of Electronic122

Engineering and Computer Science at Queen Mary University of London, on “Running repairs:123

Coordinating meaning in dialogue” (Section 3.1.1). This was followed by participants’ lightning124

talks on their most memorable WTF moments when working with communication between humans125

and robots (Section 3.2). Following the lightning talks, and based on the underlying themes identified126

by the organisers, participants were divided between 4 breakout rooms to continue discussing the127

issues they brought to the workshop. The four identified themes were: (i) Context Understanding,128

(ii) Handling Miscommunication, (iii) Interaction Problems, and (iv) General Failures.129

The second day of the virtual workshop saw Dr. Saul Albert, Lecturer in Social Science (Social130

Psychology) in Communication and Media at Loughborough University, give a keynote talk on131

“Repair, recruitment, and (virtual) agency in a smart homecare setting” (Section 3.1.2). Following132

the talk, each group from the breakout rooms of the first day reported what was discussed and each133

debate was opened to all participants. The workshop ended with a short summary of the day.134
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2.3 Face-to-Face Workshop135

The in-person part of the workshop was held at the University of Hertfordshire three months136

after the virtual event. During this full-day meeting, keynote talks were given by Prof. Gabriel137

Skantze, Professor in Speech Technology at KTH Royal Institute of Technology on “Building138

Common Ground in Human-Robot Interaction” (Section 3.1.3) and by Dr. Ioannis Papaioannou,139

Chief Technology Officer & Co-Founder of Alana 1 on “Tackling the Challenges of Open-Domain140

Conversational AI Systems” (Section 3.1.4).141

Since the registration to the face-to-face workshop was also opened to participants who did not142

take part in the virtual workshop, new attendees were given the opportunity to present their own143

lightning talks on their WTF moments (Section 3.2).144

A central part of the face-to-face workshop was the World Café session2, which provided145

participants an opportunity to freely discuss troubles and failures in small groups across several146

table topics. Based on the participants’ submitted WTF moments, and the themes from the breakout147

rooms of the virtual part, four themes were chosen for this session: (i) Context Understanding, (ii)148

Interaction Problems, (iii) Handling Miscommunication, and (iv) Suggested Benchmark Scenarios.149

Each theme was allocated to one table, and each table had one designated organizer. Participants150

and speakers were split into four different groups and moved between the tables within time slots151

of approximately 15 minutes per theme. The tasks of a table’s organizer were to summarize the152

findings and discussions from previous groups to a newly arriving group, to encourage discussions153

around the table topic, and to either encourage note taking or take notes themselves on a large flip154

chart that was allocated to each table.155

3 RESULTS

In this section, we present findings from both the virtual and the face-to-face parts of the workshop,156

describing how the keynotes shaped the discussion and how the participant lightning talks contributed157

to identify some of the most pressing problems in conversations between humans and robots. Most158

importantly, we will present the outcomes of the structured discussion, summarising the workshop159

findings.160

3.1 Keynotes161

To frame the discussion on troubles and failures with experiences from different perspectives, we162

invited four keynote speakers from scientific areas that are concerned with research problems around163

1 https://alanaai.com/

2 https://theworldcafe.com/key-concepts-resources/world-cafe-method/
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conversations between humans and robots. This section summarises their presentations in the context164

of the workshop goals to scope and identify common troubles and failures in conversation between165

humans and robots. In the virtual part of the workshop, the first keynote (Sect. 3.1.1) provided a166

conversation analytical perspective on repairs and meaning in dialogue, while the second one looked167

at repairs but from a more applied perspective in a user’s home (Sect. 3.1.2). The in-person workshop168

provided insights considering human-robot interactions (Sect. 3.1.3) and an industry viewpoint169

(Sect. 3.1.4).170

3.1.1 Running Repairs: Coordinating Meaning in Dialogue171

Healey presented the Running Repairs Hypothesis (Healey et al., 2018b), which captures the idea172

that successful communication depends on being able to detect and adjust to misunderstandings on173

the fly. The basic assumption is that no two people ever understand exactly the same thing by the174

same word or gesture and, as a result, misunderstandings are ubiquitous. Data from conversations175

support this assumption. For example, the utterance ”huh?” occurs around once every 84 seconds in176

conversation and appears to be universal across human languages (Enfield, 2017; Dingemanse et al.,177

2015). Around a third of turns in ordinary conversation involve some sort of real-time adjustments178

in language use (Colman and Healey, 2011).179

The processes for detecting and resolving problems with understanding have conventionally been180

regarded as ‘noise in the signal’ by the cognitive sciences (Healey et al., 2018a). However, there181

is evidence that they are fundamental to our ability to adapt, in real-time, to new people, new182

situations and new tasks. Conversation analysts have described a set of systematic turn-based repair183

processes that structure how people identify and respond to misunderstandings (Schegloff et al.,184

1977a; Schegloff, 1992a, 1997). Experimental evidence shows these repair processes have a critical185

role in building up shared understanding and shared languages on the fly (Healey et al., 2018b;186

Healey, 2008, 1997).187

The Running Repairs Hypothesis characterises human communication as a fundamentally error-188

prone, effortful, active, collaborative process but also highlights how these processes are structured189

and how they make human communication flexible and adaptable to new people and new situations.190

This can liberate human-robot interaction from the fantasy of perfect competence (Park et al., 2021).191

Instead, robots could, in principle, take advantage of the resources of interaction by engaging in192

repairs. This requires developing the ability to recognise critical verbal and non-verbal signals of193

misunderstanding and the use of incremental online learning processes that build on the sequential194

structure of interaction to make real-time revisions to language models (see e.g. Howes and Eshghi195

2021; Purver et al. 2011).196
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3.1.2 Repair, Recruitment, and (virtual) Agency in a Smart Homecare Setting197

Albert argued that moments of trouble and failure can provide researchers with ideal empirical198

material for observing the structure of the participation frameworks we use to get things done in199

everyday life (Goodwin, 2007; Albert and Ruiter, 2018). His presentation used multimodal video200

analysis to show how a disabled man and his (human) carer leveraged troubles and failures in their201

interactions with an Amazon Echo with voice-controlled lights, plugs, and other devices to co-design202

an effective smart homecare participation framework.203

Instances in this case study highlighted how the human carer used troubles and failures to prioritise204

the independent role and agency of the disabled person within a joint activity. For example, the205

carer would stop and wait for the disabled person to resolve the trouble in their interactions with the206

virtual agent and complete their task even when it would have been faster for the carer to complete207

the disabled person’s task manually. In other examples, trouble in the interactions between the carer208

and the virtual assistant provided an opportunity for the disabled person to intervene and assist209

the carer by correcting and completing their vocal instruction to the device. The disabled person210

was also able to tacitly ‘recruit’ (Kendrick and Drew, 2016) assistance from the human carer by211

repeatedly re-doing failed commands to the virtual assistant within earshot of the carer, soliciting212

support without having to ask for help directly.213

These episodes show how people can harness trouble and failures in interaction with a virtual214

assistant to enable subtle shifts of agency and task-ownership between human participants. This215

kind of hybrid smart homecare setting can support and extend the independence of a disabled216

person within an interdependent, collaborative participation framework (Bennett et al., 2018). More217

broadly, the communicative utility of trouble and failure in interactions with machines highlights the218

shortcomings of our idealized–often ableist–models of the ‘standard’ user, and medicalized models219

of assistive technology (Goodwin, 2004; Albert and Hamann, 2021).220

3.1.3 Building Common Ground in Human-robot Interaction221

Skantze highlighted two aspects of miscommunication and error handling in human-machine222

interaction. First, he discussed how language is ultimately used as part of a joint activity.223

For communication to be meaningful and successful, the interlocutors need to have a mutual224

understanding of this activity, and of their common ground (Clark, 1996). From this perspective,225

language processing is not a bottom-up process, where we first figure out what is being said before226

interpreting and putting it in context. Rather, we use the joint activity to steer the interpretation227

process and possibly ignore irrelevant signals. Skantze exemplified this with an early experiment,228

where a noisy channel (including a speech recognizer) was used in a human-human communication229

task, where one person had to guide another person on a virtual campus (Skantze, 2005). Although230

much of what was said did not get through (due to the error prone speech recognition), the humans231
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very seldom said things like “sorry, I didn’t understand”, which are frequent responses in human-232

machine interactions. Instead, they relied on the joint activity to ask task-related questions that233

contributed to task progression. Another implication of this view on communication is that the234

idea of “open-domain dialogue”, where there is no clear joint activity, is not meaningful to pursue235

(Skantze and Doğruöz, 2023).236

The second aspect that was discussed was the need to incorporate user feedback when the system237

is speaking, and use that feedback to model what can be regarded as common ground between the238

user and the system. Skantze exemplified this issue with a research project at KTH (Axelsson and239

Skantze, 2023), where an adaptive robot presenter is being developed (in the current demonstrator240

it is talking about classic works of art in front of a human listener). The robot presenter uses a241

knowledge graph to model the knowledge it is about to present, and then uses that same graph to242

keep track of the “grounding status” of the different pieces of information (Axelsson and Skantze,243

2020). Multimodal feedback from the user (e.g., gaze, facial expressions, nods and backchannels)244

are interpreted as negative or positive, and the graph is updated accordingly, so that the presentation245

can be adapted to the user’s level of knowledge and understanding (Axelsson and Skantze, 2022).246

3.1.4 Addressing the Challenges of Open-Domain Conversational AI Systems247

Papaioannou’s presentation showed how designing conversational AI systems able to engage in248

open-domain conversation is extremely challenging and a frontier of current research. Such systems249

are required to have extensive awareness of the dialogue context and world knowledge, the user250

intents and interests, requiring more complicated language understanding, dialogue management,251

and state and topic tracking mechanisms compared to traditional task-oriented dialogue systems.252

In particular, some of these challenges include: (a) keeping the user engaged and interested over253

long conversations; (b) interpretation and generation of complex context-dependency phenomena254

such as ellipsis and anaphora; (c) mid-utterance disfluencies, false starts, and self-corrections255

which are ever-present in spoken conversation (Schegloff et al., 1977b; Shriberg, 1994) (d) various256

miscommunication and repair phenomena such as Clarification Requests (Purver, 2004) and Third257

Position Repair (Schegloff, 1992b) whereby either the user or system does not understand the other258

sufficiently or misunderstands, and later repairs the misunderstanding. (b-d) are all crucial to robust259

Natural Language Understanding in dialogue.260

A modular conversational AI system, (called Alana), tackling some of the aforementioned261

challenges (i.e. user engagement over long conversations, ellipsis and anaphora resolution, and262

clarification requests) was developed between 2017-2019 (Papaioannou et al., 2017; Curry et al.,263

2018) and deployed to thousands of users in the United States as part of the Amazon Alexa Challenge264

(Ram et al., 2018). The Alana system was also evaluated in a multimodal environment and was used265

as the overall user conversational interaction module in a multi-task and social entertainment robotic266
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system as part of the MuMMER project (Foster et al., 2019). The integrated system was deployed in267

a shopping mall in Finland and was able to help the user with specific tasks around the mall (e.g.268

finding a particular shop or where they could buy a certain product, finding the nearest accessible269

toilet, or asking general questions about the mall) while at the same time engaging in social dialogue270

and being entertaining.271

The output of that research was fed to the implementation of the ‘Conversational NLU’ pipeline by272

Alana AI, a modular neuro-symbolic approach further enhancing the language understanding of the273

system. The Conversational NLU module is able to detect and tag a number of linguistic phenomena274

(e.g. disfluencies, end-of-turn, anaphora, ellipsis, pronoun resolution, etc) as well as detect and275

repair misunderstandings or lack of sufficient understanding, such as self-repairs, third-position276

corrections, and clarifications. The system is currently being evaluated by blind and partially sighted277

testers in the context of multi-modal dialogue allowing the users to find mislocated objects in their278

environment via a mobile application.279

3.2 Lightning Talks280

The following section contains short summaries of the lightning talks of both the virtual and the281

face-to-face part of the workshop. From the presentations, three themes were identified: Description282

and Analysis of Failures and Troubles (Sect. 3.2.1) grouping presentations that have a descriptive283

or analytical focus; Technical Aspects of Conversational Failure (Sect. 3.2.2) for presentations284

that have a more technical focus; and Adjacent Topics in Speech Interfaces (Sect. 3.2.3), grouping285

presentations on topics that, while not focusing strictly on conversational failures, covering other286

forms of errors and issues that fall into the wider topic of speech-centric human-machine interactions.287

Note that many of the talks falling into the second, technical category still contain a substantial288

element of analysis that enabled or inspired the technical solutions described therein.289

3.2.1 Description and Analysis of Failures and Troubles290

The following ten of the contributions took a more analytical approach to the failure they reported291

in their lightning talks. They describe possible reasons or implications of the failure they present.292

3.2.1.1 Laundrobot: Learning from Human-Human Collaboration293

Barnard and Berumen presented their work on Laundrobot, a human acting as a collaborative robot294

designed to assist people in sorting clothing into baskets. The study focused on participants’ ability295

to collaborate through verbal instructions and body movements with a robot that was sometimes296

erroneous when completing the task. The team analysed social signals, including speech and gestures,297

and presented three cases demonstrating human-human collaboration when things do not go as298

expected. In one of the cases, a participant gave clear instructions to an erroneous Laundrobot, which299
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led to frustration on the participant’s part, with statements such as “Okay, I’m doing this wrong”.300

The presenters described how the participant appeared to take responsibility for the errors made by301

the robot. They examined the use of language and expression of intent in different instances for302

pieces of clothing that were either correctly or incorrectly identified by Laundrobot. During this303

analysis, Barnard, Berumen, and colleagues came across an interesting case regarding the use of the304

word “right”, which was frequently used in both erroneous and non-erroneous instances. The group305

explored how that word had different meanings depending on the success or failure of Laundrobot.306

For instance, for one participant (P119), the word had a single meaning of indicating a direction in307

erroneous instances, whereas, on other occasions, it had alternative purposes. It was sometimes used308

to refer to directions and, at other times, used for confirmation, immediacy (“right in front of you”),309

or purpose (“Right, OK”).310

3.2.1.2 Sequential Structure as a Matter of Design and Analysis of Trouble311

As part of the Peppermint project3 corpus, Tisserand presented a transcript fragment, reproduced312

below. They designed a Pepper robot as an autonomous reception desk agent that would answer313

basic requests asked by library users. They captured naturally-occurring interactions: the robot was314

placed in the library, and users were free to interact and leave whenever they wanted.315

01 Hum: where can I find books of maths? | Sequence A - Part 1316

02 Rob: ((provides the direction for books of maths)) | Sequence A - Part 2317

03 Rob: is it clear to you? | Sequence B - Part 1318

04 Hum: yes thanks | Seq B-2 && Seq A-3319

05 Rob: okay, I will repeat ((repeats turn line 2)) | Sequence C - Part 1320

The failure here is the fact that the robot recognized “no thanks” instead of two separate actions:321

“yes” + “thanks” (l.4); the robot thus repeats the answer to the user’s question. Reflecting on this322

WTF moment, Tisserand highlighted how this failure occurred due to decisions made during the323

scenario design phase. Firstly, poor speech recognition differentiation between the words “yes” and324

“no” had led the scenario design team to add ”no thanks” to a word list provided for recognising325

an offer rejection:(a dispreferred turn design for this type of action (Schegloff, 2007, Chap.5)) in326

another scenario in which the robot makes an offer. Secondly, because the state machine was based327

on isolated so-called “contexts”, it was designed only to make one decision when processing a spate328

of talk. Here, therefore, the clarification check turn in line 3 was treated as independent from the329

question response in line 2. Because the speech recognition system struggled to differentiate “yes”330

and “no”, and was using the word list that labelled “no thanks” as a case ofoffer rejection, here it331

erroneously recognized “yes thanks” in line 4 as a negation (a clarification denial), and proceeded332

to repeat the turn.333

3 https://peppermint.projet.liris.cnrs.fr/
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What should have happened is that when the robot asks the user to confirm (l.3), it should recognize334

that this sequence is embedded in the previous question/answer sequence (l.1-2). In this case, the335

human’s “yes” (l.3) is a response to the just-prior confirmation request while the “thanks” responds336

(in the first structurally provided sequential slot) to the Robot’s answer as a ’sequence closing third’337

(l.3). This is why the team is now sequentially annotating training datasets to show what utterances338

correspond not only to questions and answers, but also the cement in-between: how the user might339

delay, suspend, abandon, renew or insert actions (e.g. repair). Here interaction is seen as a temporally340

continuous and incremental process and not a purely logical and serial one. In other words, context341

is seen as an organized resource more than an adaptability constraint.342

3.2.1.3 Design a Robot’s Spoken Behaviours Based on How Interaction Works343

Huang pointed out that spoken interaction is complicated. It is grounded in the social need to344

cooperate (Tomasello, 2009; Holtgraves, 2013) and requires interlocutors to coordinate and build345

up common ground on a moment-by-moment basis (Krauss and Fussell, 1990, p.112)(Holtgraves,346

2013).347

Speech is only one tool in a larger picture. Some errors are caused by failures in natural language348

understanding (NLU) as illustrated in the following sequence:349

01 User: Let’s talk about me.350

02 Robot: What do you want to know about ‘me’?351

Other issues, however, could be caused by a lack of understanding of common ground. For example,352

when a naive user asked, “Where to find my Mr Right”, the system provided a place named “Mr353

& Mrs Right” and told the user it was far away. This reply contains several layers of failure: (1)354

the robot fails to capture the potential semantic inference of the expression Mr Right; (2) it fails355

to consider the social norm that Mr Right belongs typically to one person only; and (3) it makes356

a subjective judgement about distance. One may argue that this error would not happen if the357

user knew a question-answer robot could not chat casually. However, the issue is whether a clear358

boundary of a social robot’s capability is set in the system or communicated to the user during the359

interaction. It is difficult to tell why speech interfaces may fail and how to work around the limits360

without understanding what makes interaction work and how speech assists in the process.361

Also, spoken interaction requires interlocutors, including robots, to adjust their behaviours based362

on the verbal and non-verbal feedback provided by others. A social robot that does not react363

appropriately could be deemed improperly functional, as illustrated in the following sequence. In364

the scenario, the robot failed to generate satisfactory answers several times in an open conversation;365

the user felt frustrated.366

User: You are generating GPT rubbish.367

Frontiers 13



Förster et al. Working with Troubles & Failures

Robot: (No response, carries on)368

3.2.1.4 Hey Siri . . . You Don’t Know How to Interact, huh?369

The WTF moment Wiltschko presented concerned the use of huh in interaction with Siri, Apple’s370

voice assistant.371

User: Hey Siri, send an e-mail.372

Siri: To whom shall I send it?373

User: huh?374

Siri: I couldn’t find huh in your contacts. To whom shall I send it?375

It is evident from the example that Siri cannot understand huh. This is true for huh used as an376

other-initiated repair strategy as in the example above, but it is also true for its use as a sentence-final377

tag. This is a significant failure as in human-human interaction the use of huh is ubiquitous. In fact,378

huh as a repair strategy has been shown to be available across a number of unrelated languages379

(Dingemanse et al., 2013). Wiltschko speculates that successful language use in machines is restricted380

to propositional language (i.e., language used to convey content) whereas severe problems arise in381

the domain of interactional language (i.e., language used to regulate common ground building as382

well as the conversational interaction itself). The question that arises, however, is whether human383

users feel the need to use interactional language with machines. After all, this aspect of language384

presupposes interaction with another mind for the purpose of common ground construction and it385

is not immediately clear whether humans treat machines as having a mind with which to share a386

common ground.387

3.2.1.5 Utilising Explanations to Mitigate Robot Failures388

Kontogiorgos presented current work on failure detection (Kontogiorgos et al., 2020a, 2021)389

and how robot failures can be used as an opportunity to examine robot explainable behaviours.390

Typical human-robot interactions suffer from real-world and large-scale experimentation and tend to391

ignore the ‘imperfectness’ of the everyday user (Kontogiorgos et al., 2020b). Robot explanations392

can be used to approach and mitigate robot failures by expressing robot legibility and incapability393

(Kwon et al., 2018), and within the perspective of common-ground. The presenter discussed394

how failures display opportunities for robots to convey explainable behaviours in interactive395

conversational robots according to the view that miscommunication is a common phenomenon396

in human-human conversation and that failures should be viewed as being an inherent part of397

human-robot communication. Explanations, in this view, are not only justifications for robot actions,398

but also embodied demonstrations of mitigating failures by acting through multi-modal behaviours.399
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3.2.1.6 Challenging Environments for Debugging Voice Interactions400

Porcheron presented the challenge of how we expect users to understand and debug issues with401

‘eyes-free voice interactions’, and of parallelism to the prospects of voice-based robots. A recurrent402

promise of voice-based technologies is their simplicity: we issue a command to a computer and it can403

respond accordingly. Of course, not all technology use goes as planned and sometimes errors occur.404

With graphical user interfaces (GUIs), we have a plethora of well-tested heuristics (e.g., Nielsen405

(1995)), especially for dealing with ‘errors’ where users need ‘fix’ something. However, with voice,406

in situations where people encounter something going wrong, they have to carry out work to figure407

out how to resolve the issue (Porcheron et al., 2018; Fischer et al., 2019). One specific example408

is responses which do not reveal specifics, such as “I had an issue responding to that request”.409

Users are given little purchase with which to debug this issue, and attempt to resolve this. This user410

challenge is exacerbated in the new settings where voice technologies are appearing: in our cars,411

on our bikes, and anywhere we take our smartwatch—in these settings, there is often little time412

to read and respond to a text, little audible information to go on, and plenty of distraction for the413

user. Porcheron suggested that if we want to consider voice as a modality for controlling robots, we414

first need to think through how we help users understand and recover from ‘errors’ in these sorts of415

environments first.416

3.2.1.7 The Robot [does not] Hear Me Correctly417

Hernández Garcı́a presented examples of failures of user interactions with a receptionist robot.418

Gunson et al. (2022) developed a social conversational robot that can act as a receptionist in a419

hospital waiting room for tasks such as greeting visitors, answering common questions, providing420

directions and/or scheduling information, etc. During the evaluation with users (student participants421

in a lab setting), a majority of failed interactions that prevented user task completion were the result422

of problems with the ASR. These ASR failures predominately took the form of an ASR result that423

contained only part of the user’s utterance, misrecognition of critical words, or a combination of424

the two (to the extent that the user’s original intention could not be discerned), leading the dialogue425

management into a non-coherent path and frustrating the user.426

USER: can you help me to find the exit please | ASR: please427

ROBOT: Anyway it’s a big building we’re in, isn’t it.428

Did you know you can ask me for help if you ever get lost here?429

USER: can you direct me to the exit please | ASR: can you direct me430

to Netflix please431

ROBOT: Such a lot of waiting around isn’t there.432

USER: thank you [user left]433
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Participants rated the conversation negatively when these errors occurred, as they experienced434

difficulties in making themselves understood. The user evaluations reported by Gunson et al. (2022)435

highlighted that users did not feel it was natural or that it flowed in the way they expected. Participants436

did not believe that “the robot heard me correctly most of the time” or that “the robot recognised the437

words I said most of the time” nor “felt confident the robot understood the meaning of my words”.438

Conversational troubles may start at a speech recognition level, but these failures are propagated439

throughout the whole speech interface pipeline, compounding to create WTF moments and leading440

to poor performance, increasing user frustration, and loss of trust, etc.441

3.2.1.8 Hello, It’s Nice to “Meat” You442

Nesset shared examples of WTF moments encountered while interacting with Norwegian chatbots443

through written text. The first failure presented was users’ committing spelling mistakes interacting444

with a virtual agent through chat. This caused the agent to misunderstand the overall context of the445

conversation. A good example of this is misspelling meet with meat, and the chatbot then replying446

with a response about sausages.447

The second part entailed a user failure that is specifically for multilingual users. In some non-native448

English-speaking countries, such as Norway, technical terms and newer words are often commonly449

said in English. This potentially leads users to interact with agents in two languages within the same450

sentence/conversation. This can lead to the agent struggling to interpret the terms in the second451

language, and assuming that they mean something else in the original interaction language. These452

are some examples of how uncertain user output can result in failures from the robot.453

3.2.1.9 Speech Misrecognition: A Potential Problem for Collaborative Interaction in454

Table-grape Vineyards455

Kaszuba presented troubles and failures encountered while designing a spoken human-robot456

interaction system for the CANOPIES project4. This project aims to develop a collaborative paradigm457

for human workers and multi-robot teams in precision agriculture, specifically in table-grape458

vineyards. When comparing some already existing speech recognition modules (both online and459

offline), the presenter identified communication issues associated with the understanding and460

interpretation of specific words of the vineyard scenario, such as ”grape”, ”bunch”, and ”branch”.461

Most of the tested applications could not clearly interpret such terms, leading the user to repeat the462

same sentence/word multiple times.463

Hence, the most significant source of failure in speech interfaces that Kaszuba has described is464

speech misrecognition. Such an issue is particularly relevant, since the quality and effectiveness of465

4 https://www.canopies-project.eu/
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the interaction strictly depend on the percentage of words correctly understood and interpreted. For466

this reason, the choice of the application scenario has a crucial role in the spoken interaction, and467

preliminary analysis should be taken into consideration when developing such systems, as the type468

and position of the acquisition device, the ambient noise and the ASR module to adopt. Nevertheless,469

misrecognition and uncertainty are unavoidable when the developed application requires people470

to interact in outdoor environments and communicate in a language that is not the users’ native471

language.472

Hence, some relevant considerations concerning ASR modules should be taken into account in473

order to implement a robust system that, eventually, can also be exploited in different application474

scenarios. The percentage of uncertainty, the number of misrecognized words and the environmental475

noise that can negatively affect communication are some fundamental issues that must be addressed476

and minimized.477

3.2.1.10 Leveraging Multimodal Signals in Human Motion Data During Miscommunication478

Instances479

Approaching from a natural dialogue standpoint and inspired by the Running Repairs Hypothesis480

Healey et al. (2018b), Özkan shared a presentation on why and how we should take advantage of481

WTF-moments or miscommunications to regulate shared understanding between humans and speech482

interfaces. Rather than avoiding these moments (which is impossible), if speech interfaces were to483

identify them and show appropriate behaviour, it could result in more natural, dynamic and effective484

communication.485

Detecting miscommunications from the audio signal can only can be costly in terms of486

computational load or prone to error due to noise in most environments. Fortunately, repair487

phenomena manifest themselves in non-verbal signals as well Healey et al. (2015); Howes et al.488

(2016). Findings regarding speaker motion during speech disfluencies (self-initiated self-repairs)489

have shown that there are significant patterns in the vicinity of these moments Özkan et al. (2021,490

2023); Ozkan et al. (2022). Specifically, the speakers have higher hand and head positions and491

velocities near disfluencies. This could be treated as a clear indicator for artificial interfaces to492

identify troubles of speaking in their human partner. For example, to the user input “Could you493

check the flights to Paris -uh, I mean- Berlin?”, the interface, instead of disregarding the uncertain494

utterance, could offer repair options more actively by returning “Do you mean Paris or Berlin?” in495

a collaborative manner.496

Though not in the context of disfluencies, a common example of not allowing repair (in this case497

other initiated other repair) occurs when the user needs to correct the output of an interface or498

simply demand another response to a given input. As a WTF moment in the repair context, Özkan499

demonstrated a frequent problem in their interaction with Amazon Alexa. When asked to play a500
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certain song, Alexa would play another song with the same or similar name. The error is not due to501

speech recognition, because Alexa understands the name of the song very well. However, it maps502

the name to a different song that the user does not want to hear. No matter how many times the503

user tries the same song name input, even with the artist name, Alexa would still pick the one that504

is the ‘first’ result of its search. If the conversational repair was embedded in the design, a simple505

solution to this problem could have been “Alexa, not that one, can you try another song with the506

same name?”, but Alexa does not respond to such requests.507

3.2.2 Technical Aspects of Conversational Failure508

The following five of the contributions describe technical aspects of failures. Presentations in this509

section either discuss the technical causes of failures, point out technological attempts to recognize510

when conversational trouble occurs, or summarize approaches on handling troubles on part of the511

robot.512

3.2.2.1 Chefbot: Reframing Failure as a Dialogue Goal Change513

Gkatzia presented their work on Chefbot, a cross-platform dialogue system that aims to help users514

prepare recipes (Strathearn and Gkatzia, 2021a). The task moves away from classic instruction515

giving and incorporates question-answering for clarification requests, and commonsense abilities,516

such as swapping ingredients and requesting information on how to use or locate specific utensils517

(Strathearn and Gkatzia, 2021b). This results in altering the goal of the communication from cooking518

a recipe to requesting information on how to use a tool, and then returning to the main goal. It519

was quickly observed that changing the dialogue goal from completing the recipe to providing520

information about relevant tasks resulted in failure of task completion. This issue was subsequently521

addressed by reframing failure as a temporary dialogue goal change, which allowed the users to522

engage in question answering that was not grounded to the recipe document, and then forcing the523

system to resume the original goal.524

3.2.2.2 Failure in Speech Interfacing with Local Dialect in a Noisy Environment525

Liza (Farhana) presented their ongoing work in capturing the linguistic variation of speech526

interfaces in real-world scenarios. Specifically, local dialects may impose challenges when modelling527

a speech interface using an artificial intelligence (deep learning) language modelling system. Deep528

learning speech interfaces rely on language modelling which is trained on large datasets. A large529

dataset can capture some linguistic variations; however, dialect-level variation is difficult to capture530

as a large enough dataset is unavailable. Moreover, very large models require high-performance531

computation resources (e.g., GPU) and take a long time to respond, which imposes further constraints532

in terms of deploying such systems in real scenarios. Large data-driven solutions also cannot easily533

deal with noise as it is impractical to give access to enough real-world data from noisy environments.534
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Overall, state-of-the-art AI models are still not deployable in scenarios with dialect variation and535

noisy environments. Alharbi et al. (2021) identified several hurdles in training end-to-end Automatic536

Speech Recognition (ASR) models. Additionally, the conditional interdependence between the537

acoustic encoder and the language model was emphasized by (Xu et al., 2020). Consequently, while538

augmenting the standard text training data can enhance the efficacy of general-purpose language539

models, the limited availability of corresponding acoustic data poses challenges in training end-to-540

end ASR systems. Moreover, when addressing dialect modeling (Hirayama et al., 2015), the scarcity541

of training data exacerbates the difficulties in integrating speech interfacing and language modeling542

(Liza, 2019) within the ASR framework.543

3.2.2.3 The ‘W’ in WTF Moments can also be ‘When’: The Importance of Timing and544

Fluidity545

Hough presented WTF moments driven more by inappropriate timing of responses to user546

utterances, rather than by content misunderstandings. Improving the first-time accuracy of Spoken547

Language Understanding (SLU) remains a priority for HRI, particularly given errors in speech548

recognition, computer vision and natural language understanding remain pervasive in real-world549

systems. However, building systems capable of tolerating errors whilst maintaining interactive550

fluidity is an equally important challenge. In human-human situated interactions where an instructee551

responds to a spoken instruction like “put the remote control on the table” and a follow-up repair552

like “no, the left-hand table” when the speaker realizes the instructee has made a mistake, there is553

no delay in reacting to the initial instruction, and adaptation to the correction is instant (Heldner554

and Edlund, 2010; Hough et al., 2015), in stark contrast to state-of-the-art robots with speech555

interfaces. Increasing interactive fluidity is vital to give robots with speech understanding more556

seamless, human-like transitions from processing speech to taking physical action without delay,557

permitting appropriate overlap between the two, and the ability to repair actions in real-time. Rather558

than waiting for components to be perfected, preliminary experiments with a pick-and-place robot559

show users can be tolerant of errors if fluidity is kept high, including appropriate repair mechanisms560

(Hough and Schlangen, 2016).561

3.2.2.4 Laughter in WTF Moments562

Maraev presented a hypothesis that laughter can be treated as an indicator of a WTF moment.563

Laughter can occur in such moments as a) speech recognition failures disclosed to a user via explicit564

grounding feedback, b) awkwardness due to retrieval difficulties, c) resulting system apologies and565

down players (e.g., “don’t worry”). Along with examples from task-oriented role-played dialogues,566

Maraev discussed the following constructed example, where laughter communicates a negative567

feedback to the system’s clarification of speech recognition result:568
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Usr> I would like to order a vegan bean burger.569

Sys> I understood you’d like to order a vegan beef burger. Is that correct?570

Usr> HAHAHA571

Maraev et al. (2021) focused on non-humorous laughs in task-oriented spoken dialogue systems.572

The paper shows how certain types of laughter can be processed within the dialogue manager and573

natural language generator, namely: laughter as negative feedback, laughter as a negative answer to574

a polar question and laughter as a signal accompanying system feedback.575

3.2.2.5 To Err is Robot576

Giuliani presented findings from six years of research on erroneous human-robot interactions.577

The team of researchers led by Giuliani has shown that participants in human-robot interaction578

studies show unique patterns of social signals when they experience an erroneous situation with579

a robot (Mirnig et al., 2015). The team annotated two large video corpora of 201 videos showing580

578 erroneous situations and 1200 videos showing 600 erroneous situations, respectively (Giuliani581

et al., 2015; Cahya et al., 2019). They found that there are two types of errors that do occur in582

human-robot interaction. Social norm violations are situations in which the robot does not adhere583

to the underlying social script of the interaction. Technical failures are caused by the technical584

shortcomings of the robot. The results of the video analysis show that the study participants use585

many head movements and very few gestures but they often smile when in an error situation with586

the robot. Another result is that the participants sometimes stop moving at the beginning of error587

situations. The team was also able to show in a user study for which a robot was purposefully588

programmed with faulty behaviour that participants liked the faulty robot significantly better than589

the robot that interacted flawlessly (Mirnig et al., 2017). Finally, the team trained a statistical model590

for the automatic detection of erroneous situations using machine learning (Trung et al., 2017). The591

results of this work demonstrate that automatic detection of an error situation works well when the592

robot has seen the human before.593

3.2.3 Adjacent Topics in Speech Interfaces594

The two contributions under this theme do not discuss conversational failures directly but address595

the related topics of explanatory AI and privacy of speech interfaces.596

3.2.3.1 What is a ’Good’ Explanation?597

Kapetanios presented some thoughts around the long-standing research question of what is a598

good explanation in the context of the current buzz around the topics of explainable AI (XAI)599

and interpretable Machine Learning (IML). Using Amazon’s Alexa and Google’s Digital Assistant600

to generate explanations for answers being given to questions being asked of these systems, he601
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demonstrated that both systems, at the technological forefront of voice-based HCI approaches to602

answering specific questions, fail to generate convincing explanations. Convincing explanations603

should fit the facts, be relevant, tailored to the recipient, and typically do more than merely describe604

a situation (Dowden, 2019, chap. 14). It is frequently the latter where digital assistants have been605

observed to struggle. Hence, when describing the results of running several thousand queries through606

the most common digital assistants, provides the following example (Enge, 2019):607

Siri, when being asked the question “Who is the voice of Darth Vader?”, instead of providing608

the name of the (voice) actor, returns a list of movies featuring Darth Vader. While this answer609

is topically relevant, it certainly is not a proper answer to the question. The same problem of610

explanation persists with ChatGTP-3/4, despite its fluency in generating precise answers to specific611

questions in natural language.612

3.2.3.2 Privacy and Security Issues with Voice Interfaces613

Williams presented privacy and security issues and how these are often underestimated, overlooked,614

or unknown to users who interact with voice interfaces. What many voice interface users are unaware615

of is that only three to five seconds of speech are required to create a voiceprint of a person’s real616

voice as they are speaking (Luong and Yamagishi, 2020). One of the risks that follows is that617

voiceprints can be re-used in other voice applications to impersonate or create voice deepfakes618

(Williams et al., 2021b,a). In the UK and many other countries, this poses a particular security risk619

as voice-authentication is commonly used for telephone banking and call centres. In addition, some620

people may be alarmed when a voice interface reveals private information by “speaking out loud”621

sensitive addresses, birth dates, account numbers, or medical conditions. Anyone in the nearby622

vicinity may overhear this sensitive information and technology users have no ability to control what623

kinds of information a voice interface may say aloud (Williams et al., 2022).624

3.2.4 Summary of Lightning Talks625

Through their lightning talks, our participants contributed to an initial gathering of different626

troubles and failures in conversational interactions between humans and robots. Thanks to the627

description of their memorable failures and their analysis, we could identify the themes of analysis,628

technical aspects and adjacent topics, which all impact the success (or failure) of a conversation.629

3.3 Summary of World Café Session630

During the World Café session, four working groups were created based on recurring themes631

from the lightning talks, participants’ answers as to what they perceived as the most pressing issue632

or the biggest source of failure for speech interfaces, as well as the aim to define the sought after633

benchmark scenario. Through the initial submissions of the participants, their lightning talks and the634

keynotes, three main macro-categories have emerged: i) miscommunication, ranging from speech635

Frontiers 21



Förster et al. Working with Troubles & Failures

recognition failures to more semantic and conversation-dependent failures; ii) interaction problems,636

encompassing all those failures that are due to users’ expectations and behaviours; iii) context637

understanding, linked to the fact that interaction is shaped by context and that context changes fast,638

calling for a need to find more robust ways to establish common ground. While these three themes639

are highly interdependent and could culminate in the sought after benchmark scenario (the fourth640

working group), each of them presents peculiarities that we considered worth discussing in detail.641

3.3.1 Handling Miscommunication642

The discussion focused on the need to acknowledge and embrace the concept of miscommunication.643

One of the open challenges identified by this group was to equip robots with the ability to learn644

from various forms of miscommunication and to actively use them as an opportunity to establish645

common ground between users and robots. When communicating with a robot, the human user646

usually has a goal in mind. The robot could exploit miscommunication to understand this goal647

better by asking for clarifications at the right moments and updating the common ground. The648

discussion also acknowledged that miscommunication is only the starting point. Two distinct new649

challenges and opportunities arise when working on resolving miscommunication: 1) how to explain650

the miscommunication, and 2) how to move the conversation forward. Both problems are highly651

context-dependent and related to the severity and type of miscommunication. Moreover, being652

able to repair a breakdown in conversation may also depend on being able to establish appropriate653

user expectations in the first place by giving an accurate account of what the robot is really able654

to accomplish. The final discussion point from this group centered on the possibility of enriching655

the multimodal and non-verbal component of conversations to help the robot perceive when a656

miscommunication has happened by detecting and responding to, for example, long pauses or657

changes in specific types of facial expressions.658

3.3.2 Interaction Problems659

Interaction problems do not only encompass challenges that are specific to the technology used,660

like issues with automatic speech recognition or the presence of long delays when trying to engage661

in a “natural” conversation. They are related to perceived failures that longitudinally include all the662

technical problems identified by the other themes and relate to how the interaction with the human663

user is managed. In this context, human users play an essential role and the participants of this664

group emphasized the necessity of creating expectations that allow users to build an adequate mental665

model of the technology they are interacting with. In Washburn et al. (2020a), authors examine how666

expectations for robot functionality affected participants’ perceptions of the reliability and trust of a667

robot that makes errors. The hope is that this would lead to an increased willingness and capacity668

to work with the failures that inevitably occur in conversational interactions. Anthropomorphism669

was identified as one of the possible causes for the creation of wrong expectations: the way robots670
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both look and speak risks tricking users into thinking that robots have human-like abilities and are671

able to follow social norms. Once this belief is abandoned, users could then form an appropriate672

expectation of the artificial agents, and the severity of the failures would decrease. Setting the right673

expectations will also enable users to understand when a failure is a technological error in execution674

or when it is a design problem: humans are unpredictable, and some of the problems that arise in the675

interactions are due to users’ behaviours that were not embedded in the design of robot’s behaviours.676

A related aspect that was considered important by this group is the transparency of the interaction:677

the rationale behind the failures should be explained and made clear to the users to enable mutual678

understanding of the situation and prompt recovery. This could, in fact, be initiated by the users679

themselves. Another need, identified as a possible way to establish better conversational interactions,680

is the missing link of personalisation. The more the agents are able to adapt to the context and the681

users they are interacting with, the more they will be accepted, as acceptance plays a fundamental682

role in failure management. A general consensus converged regarding the fact that we are not yet683

at the stage where we can develop all-purpose chatbots - or robots - and the general public should684

be made aware of this, too. Each deployment of conversational agents is context related and the685

conversation is mainly task-oriented, where a precise exchange of information needs to happen for a686

scenario to unfold.687

3.3.3 Context Understanding688

All four groups agreed that context understanding is crucial for reducing or entirely eliminating689

failures of interactive systems that use spoken language. We determined that capturing and modelling690

context is particularly challenging since it is an unbound and potentially all-encompassing problem.691

Moreover, all dialogue, and in fact, interaction as a whole, would be shaped by the context while at692

the same time renewing it. Likewise, the volatility of context, in particular, potentially rapid context693

switches, was also identified as challenging in human-robot conversation. Modelling the interaction694

partner(s) and evaluating their focus of attention was thereby discussed as one potential approach to695

reducing context search space.696

A precise and consistent representation of the dialogue context was therefore identified as one of697

the most important problems that would rely on modelling not only the current situation but also any698

prior experiences of humans with whom the system is interacting. Such previous experience was seen699

to have significant effects on expectations about the interactive system that would potentially require700

calibration before or during system runtime to avoid misunderstandings as well as misaligned trust701

towards the system Hancock et al. (2011). However, even if we assume an optimal representation of702

context would be possible, the problem of prioritisation and weighting would still persist.703

Another challenge discussed was the need for a multi-modal representation of the current situation704

comprised of nonverbal signals, irregular words, and interjections. Such a model would be required705
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for an appropriate formulation of common ground, whereby it remains unclear what exactly would706

be required to include. In that context, one group identified the benefits of a typology that could707

encompass an interaction situation in a multi-modal way, potentially extending work by Holthaus708

et al. (2023). The exact mapping between a signal or lexical index and their meanings is, however,709

still difficult to establish.710

On the other hand, considering the dialogue context was unanimously regarded as beneficial to711

enrich human-robot conversations offering numerous opportunities to increase its functionality, even712

if it would not be possible to capture all context comprehensively. With a personalised model of713

interaction partners, for example, the spoken dialogue could be enhanced by taking into account714

personal interaction histories and preferences. Conversational agents could be improved for highly715

constrained settings and converge faster to relevant topics.716

It is noteworthy to mention that enriching the capabilities of conversational agents with context717

information poses ethical challenges, e.g. in terms of privacy and data protection. This approach718

might thus introduce barriers in terms of user acceptance that need to be considered Lau et al. (2018).719

However, using context appropriately could also help to improve a system’s transparency either by720

designing it with its intended context in mind or by utilising it during a conversation, for example,721

by providing additional interfaces to transport further information supporting the dialogue or by722

analysing context to reduce ambiguities and eliminate noise. The context was regarded to often play723

a vital role in providing the necessary semantic frame to determine the correct meaning of spoken724

language. Making use of domain and task knowledge was thereby identified as particularly helpful.725

Moreover, intentionally misapplying context or analysing situations where context has previously726

misled a conversation, might be avenues to recognize and generate error patterns to help detect727

future troubles and failures in speech understanding.728

3.3.4 Benchmark Scenario(s)729

On this discussion table, participants struggled to devise a single benchmark scenario that would730

elicit most, if not all, commonly occurring conversational failures. As a main reason for the difficulty731

of identifying such a prototypical scenario, the lack of a comprehensive taxonomy of conversational732

failures was determined.733

An alternative suggestion to the proposed task of identifying one, failure-wise all encompassing,734

scenario was also made. Rather than seeking to specify a single scenario, it may be necessary735

to create test plans for each specific interaction task using chaos engineering, with some of the736

defining characteristics for a scenario being (1) the type(s) of users, (2) the domain of use (e.g.737

health-related, shopping mall information kiosk), (3) the concrete task of the robot, (4) the types738

of errors under investigation. Chaos engineering is typically used to introduce a certain level of739

resilience to large distributed systems (cf. Fomunyam (2020). Using this technique, large online740
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retailers such as Amazon deliberately knock out some of their subsystems, or introduce other kinds741

of errors, to ensure that the overall service can still be provided despite the failure of one or more742

of these, typically redundant, components (cf. Siwach et al. (2022)). While both the envisioned743

benchmark scenario(s) and chaos engineering are meant to expose potential failures of human-made744

systems, the types of systems and types of failure differ substantially. While failures in technical745

distributed systems are unilateral, in the sense that the source of failure is typically attributed solely746

to the system rather than its user, attribution of blame in conversational failure is less unilateral. If a747

successful conversation is seen to be a joint achievement of at least two speakers, conversational748

failure is probably also best seen as a joint “achievement” of sorts. In other words, the user of a749

conversational robot is always also an interlocutor during the interaction. Hence, whatever approach750

we use to identify and correct conversational failures, the correct level of analysis is that of the dyad751

rather than of the robot alone.752

Independent of the chaos engineering approach, another suggestion was that at least two benchmarks753

might be needed in order to distinguish between low-risk and high-risk conversations. Here, low-risk754

conversations would be the more casual conversations that one may have with a shop assistant whose755

failure would not carry any hefty consequences. High-risk conversations, on the other hand, would756

be those where the consequences of conversational failure might be grave - imagine conversational757

failure between an assistive robot and its human user that are engaged in some joint task of removing758

radioactive materials from a decommissioned nuclear site. If such a distinction should be made, the759

logical follow-up question would be how the boundary between low and high-risk scenarios should760

be determined. Finally, it should be mentioned that at least partial benchmarks such as Paradise761

exist for the evaluation of spoken dialogue systems Walker et al. (1997).762

4 DISCUSSION

One significant result from the workshop is that no succinct and, more importantly, singular763

benchmark scenario could be envisioned that would likely elicit all or, at least, a majority of764

identified failures. A likely reason behind this is the lack of a comprehensive categorization of765

conversational failures and their triggers in mixed human-machine interactions. Having such a766

taxonomy would allow us to embed such triggers systematically in benchmark scenarios.767

4.1 Wanted: A Taxonomy of Conversational Failures in HRI768

Honig and Oron-Gilad (2018) recently proposed a taxonomy for failures in HRI based on a769

literature review of prior failure-related HRI studies. Their survey indicated a great asymmetry in770

these investigations, in that the majority of previous work focused on technical failures of the robot.771

In contrast, Honig & Oron-Gilad noticed that no strategies had been proposed to deal with “human772

errors”. From a conversation analytic viewpoint, the dichotomy of technical vs. human error may not773
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always be as absolute when applied to conversational failures, especially since, despite sharing some774

terminology, CA conceptualizes conversational success and failure quite differently. Conversation775

analysts conceive of successful conversation as the achievement of joint action by any party (robot or776

human). In this sense, when a failure occurs, the ‘blame’ lies with all participants. Similarly, success777

in CA terms might mean that a joint action is ‘successfully’ achieved interactionally, even if there778

are informational errors. For example, an invitation to meet under the clock at Grand Central station,779

where the recipient misunderstands the time/place might be ‘successfully’ achieved as an orderly780

interaction, the error being marked. In HRI, however, this failure of the ‘Schelling game’ would781

be considered a classic ‘grounding error’ Clark (1996), and it would certainly matter who made782

the error: the human or robot. While not assigning blame for some singular failure simultaneously783

to both participants, Uchida et al. (2019a) recently used a blame assignment strategy where the784

responsibility for a sequence of failures was attributed in an alternating fashion to the robot and785

the human. As indicated by our struggle to find a good general characterisation of conversational786

failures during the workshop, we advocate the construction of a taxonomy of conversational failures787

for mixed, that is human-machine dyads and groups. To build such a taxonomy, an interdisciplinary788

effort is needed, given that the types of relevant failures span the entire spectrum from the very789

technical (e.g. ASR errors) to the very “relational” (e.g. misunderstanding based on lack of common790

ground). The relevant disciplines would include linguistics, conversation analysis, robotics, NLP,791

HRI, and HCI. This workshop represented the first stepping stone towards this interdisciplinary792

effort. One theory-related advantage of taxonomy building is that it forces us to reconsider theoretical793

constructs from different disciplines, thereby potentially exposing gaps in the respective theories -794

similarly to how conversation analysis has exposed shortcomings of speech act theory (cf. Levinson,795

1983).796

The process of defining the types of errors could also help us to understand why they arise, measure797

their impact and explore possibilities and appropriate ways to detect, mitigate and recover from798

them. If, for example, artificial agents and human users are mismatched conversational partners as799

suggested by Moore (2007) and Förster et al. (2019), and if this mismatch creates constraints and a800

“habitability gap” in HRI (Moore, 2017), are their specific types of failures that only occur due to801

such asymmetric setups? And, if yes, what does that mean for potential error management in HRI?802

If priors shared between interlocutors matter (Moore, 2022; Huang and Moore, 2022), how does803

the aligning of interactive affordances help to increase the system’s capacity to deal with errors?804

Moreover, errors can affect people’s perception of a robot’s trustworthiness and reliability (e.g.,805

Washburn et al., 2020b), as well as their acceptance and willingness to cooperate in HRI (e.g., Salem806

et al., 2015). What type of errors matters more? In terms of error recovery, it has been shown that807

social signals, such as facial action unit (AU), can enhance error detection (Stiber et al., 2023);808

Users’ cooperative intention can be elicited to avoid or repair from dialogue breakdowns (Uchida809

et al., 2019b). The question is, when facing different errors, do these strategies need to be adaptable810
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to tasks/scenarios, and if so, to what degree? Answering the above questions requires a deeper811

understanding of conversational failures, and taxonomy building is one possible way to increase our812

understanding.813

A more practical advantage of having such a taxonomy is discussed in the next section.814

4.2 Benchmarking Multimodal Speech Interfaces815

One of the intended aims of the workshop was to define, or at least outline, some benchmark816

scenario that would have the “built-in” capacity to expose, if not all, at least a good number of817

potential communicative failures of some given speech interface. During the workshop, it became818

apparent that we would fail to come up with such a single scenario. It questionable whether such a819

scenario could exist or whether a number of scenarios would be needed to target different settings in820

which the speech interface is to be deployed. One main reason for our struggle that emerged during821

the World Café session was the lack of a taxonomy of communicative failures in HRI. Having such822

a taxonomy would allow the designer, or user, of a speech interface to systematically check whether823

it could handle the type of situation in which the identified failures are likely to occur prior to testing824

it “in the wild”.825

Related to the construction of a potential (set of) benchmarks is the question of how to evaluate826

multimodal speech interfaces. The popular evaluation framework PARADISE Walker et al. (1997),827

originally designed for the assessment of unimodal dialogue systems, has already been used in828

multimodal HRI studies (e.g. Giuliani et al., 2013; Hwang et al., 2020; Peltason et al., 2012). Also829

within the HCI community multimodal alternatives to PARADISE have been proposed (e.g. Kühnel,830

2012). Given these existing evaluation frameworks for multimodal dialogue systems, what would a831

failure-based method bring to the table?832

A characteristic of PARADISE and related frameworks is that they tend to evaluate a past dialogue833

according to a set of positive performance criteria. PARADISE, for example, uses measurements of834

task success, dialogue efficiency, and dialogue quality to score a given dialogue. There is likely an835

inverse relationship between a failure-based evaluation and, for example, dialogue efficiency as a836

dialogue containing more failures, will likely require more turns to accomplish the same task due837

to repair-related turns. This would mean that the efficiency of this failure-laden dialogue would be838

reduced. However, despite this relationship, the two methods are not commensurate. A failure-based839

scoring method could, for example, put positive value on the resilience of some speech interface,840

by assigning positive values to the number of successful repairs. This would, in some sense, be841

diametrically juxtaposed to efficiency measures. On the other hand, these two ways of assessing a842

speech interface are not mutually exclusive and could be applied simultaneously.843

One interesting observation with respect to the surveyed studies points to a potential limitation844

of existing evaluation frameworks such as PARADISE. All of the referenced studies are based845

on turn-based interaction formats. While turn-based interaction is certainly a common format in846
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many forms of human-human and human-robot interaction, it is likely not the only one. Physical847

human-robot collaboration tasks which require participants to coordinate their actions in a near-848

simultaneous manner, for example when carrying some heavy object together, do not necessarily849

follow a turn-based format. While some of the involved communication channels such as speech850

will likely be turn-based, other channels such as sensorimotor communication (SMC, cf. Pezzulo851

et al., 2019) may or may not follow this format.852

5 CONCLUSION

The first workshop on “Working with Troubles and Failures in Conversation between Humans and853

Robots” was the first effort to gather an interdisciplinary team of researchers interested in openly854

discuss the challenges and opportunities in designing and deploying speech interfaces for robots.855

Thanks to insights from conversation analysis, cognitive science, linguistics, robotics, human-robot856

interaction, and dialogue systems, we initiated a discussion that does not simply dismiss failures in857

conversational interaction as a negative outcome of the robotic system, but engages with the nature of858

such failures and the opportunities that arise from using them to improve the interactions. We believe859

this initial push will spawn a deeper research effort towards the identification of a benchmark for860

multimodal speech interfaces and the creation of a systematic taxonomy of failures in conversation861

between humans and robots which could be useful to interaction designers, both in robotics and862

non-robotics fields.863

6 NOMENCLATURE

Voice interfaces: User interfaces that allow interaction with technology through spoken commands864

or queries.865

Robotic speech interfaces: Voice interfaces applied on robots that use both speech recognition as866

well as synthesised or artificial voices to communicate and interact with users.867

Chatbots: Text-based interfaces able to provide information, answer questions, or assist with various868

tasks.869

Agents, artificial agents, conversational agents: Terms used interchangeably for systems designed870

to engage in natural language conversations with humans, by employing natural language processing871

and machine learning to understand and respond to user queries, provide information or assistance.872
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