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Abstract

Although machine learning models for continual learning
(CL) can mitigate forgetting on static, systematically col-
lected datasets, it is unclear how human users might per-
ceive a robot that continually learns over multiple inter-
actions with them. In this paper, we developed a system
that integrates CL models for object recognition with a
mobile manipulator robot and allows humans to directly
teach and test the robot over multiple sessions. We con-
ducted an in-person between-subject study with two CL
models and 40 participants that interacted with our sys-
tem in 200 sessions (5 sessions per participant). Our re-
sults indicate that state-of-the-art CL models might per-
form unreliably when applied on robots interacting with
human participants. Our results also suggest that partici-
pants’ trust in a continual learning robot significantly de-
creases over multiple sessions if the robot forgets previ-
ously learned objects. However, the perceived task load
on participants for teaching and testing the robot remains
low for all sessions, indicating the feasibility of continual
learning robots in the real world. Our code is available at
https://github.com/aliayub7/cl_hri.

1. Introduction

To operate in daily environments, a general task for a robot
is to learn and understand the objects in its environment
[1, 5, 8, 30, 31]. Various machine learning models have
been developed in the last decade for achieving remark-
able performance on object recognition tasks [12,26]. How-
ever, one of the main challenges faced by robots using ML
models to continually learn objects is catastrophic forget-
ting [9, 19]. Catastrophic forgetting occurs when a con-
tinual learning (CL) agent forgets the previously learned
knowledge when learning new information [22] (note that
the degree of forgetting may turn out to be far from what
users find “catastrophic”.). In recent years, various research
directions (some inspired by neuroscience [14, 15]) have

been taken in the field of continual learning to mitigate
the catastrophic forgetting problem [6, 11, 17, 20, 21, 27].
While SOTA CL models alleviate catastrophic forgetting,
they still suffer from some forgetting when learning over a
large number of repeated sessions [2, 15, 16].

Another challenge faced by continual learning robots is
that their users might not provide a sufficiently large amount
of data to train an ML model. In the past few years, robotics
researchers developed CL models that can learn continually
from only a few training examples per object, while also
mitigating catastrophic forgetting [4, 29]. This problem is
known as Few-Shot Incremental Learning (FSIL) [4,28,29,
34]. Although FSIL approaches have produced promising
results on systematically collected “non-social” datasets by
the experimenters, it is unknown how these systems might
perform when learning from human participants. It is also
unknown how people might perceive robots that continually
learn through interaction with their users. To the best of
our knowledge, we know of no other work on testing CL
or FSIL models deployed on robots that learn from human
users (unlike experts who are familiar with programming
the particular robot and have in-depth knowledge of the CL
models) over multiple interactions.

In this paper, we consider a system for socially guided
continual learning (SGCL) and conduct an in-person user
study to explore how people perceive a robot that contin-
ually learns common household objects over multiple in-
teractions. Our system integrates a graphical user interface
(GUI) with a CL model deployed on the Fetch mobile ma-
nipulator robot [33]. In this system, we focused solely on
the continual learning of objects and avoided adding any
extra social cues to the robot that might affect human per-
ceptions of the robot. We performed a long-term between-
subject user study (N=40) where participants interacted for
5 sessions with a fully autonomous Fetch robot that used
two different CL models: one that suffers from catastrophic
forgetting on static datasets, and another state-of-the-art
(SOTA) approach for FSIL that mitigates forgetting. We
used two questionnaires in the study to answer the follow-
ing research questions:
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RQ1 How does forgetting affect humans’ trust in a continual
learning robot?

RQ2 How does humans’ trust change when interacting with
a continual learning robot over multiple sessions?

RQ3 Do people consider a continual learning robot easy to
use?

2. Socially Guided Continual Learning
We studied human perceptions of a continual learning robot
in the context of an object recognition task. In this setup,
the robot learns household objects from the user (in mul-
tiple sessions) on a table-top environment, and then finds
and points to the requested object on the table after learning
them from the user. Figure 1 (left) shows the table-top ex-
perimental setup for this study. The simplicity of the setup
and the task makes it clear what the user should do to teach
the robot different objects and what the robot should do to
find the learned objects during the testing phase.

For this setup, we consider a socially guided continual
learning (SGCL) system for the object recognition task,
which integrates CL models with the robot for interactive
and transparent learning from human users. Figure 1 (right)
shows the SGCL system for the object recognition task. In
this system, in each session (or increment) t the user inter-
acts with the robot through a graphical user interface (GUI)
to teach the robot Lt number of objects. The robot captures
images of the Lt objects and pre-process them, and gets the
labels of the processed object images from the user to gen-
erate a dataset Dt = {xt

i, y
t
i}

|Dt|
i=1 , where xt

i is the ith image
in the dataset with the class label yti . The CL model M then
trains on the dataset Dt. Note that unlike static CL setups
(such as FSIL [4]), the number of objects per object class
in a session is not fixed as it is dependent on the number of
times the user teaches an object to the robot. Further, there
can be an overlap in the object classes taught in different
sessions depending on how the user labels the objects.

In the testing phase, the robot receives the request from
the user through the GUI to find an object. The robot passes
the pre-processed images to the CL model to get the pre-
dicted object labels. If the object is found, the robot finds
the 3D location of the object on the table and points to the
object using its arm. Note that the user has flexibility in
terms of the total number of objects to be tested in an incre-
ment, as well as which objects to test (old or new objects).

2.1. Continual Learning Models

The main goal of our study is to do an in-depth analy-
sis of how users perceive CL models over repeated, long-
term interactions. To do such an analysis, it is important
to choose a meaningful baseline. The naive finetuning (FT)
approach [22] has been used extensively in CL literature as

Figure 1. (Left) Experimental layout for the SGCL setup with the
participant and the robot. (Right) Our complete SGCL system.
Processed RGB images from Fetch’s camera are sent to the GUI
for transparency and also passed on to the CL Model. The user
sends object names to the CL model either for training the CL
model or finding an object. The arm trajectory planner takes point
cloud data, processed RGB data, and predicted object labels from
the CL model as input and sends the arm trajectory for the Fetch
robot to point to the object.

a baseline on static datasets. Therefore, we chose to test FT
as our study’s baseline model. FT approach uses a convolu-
tional neural network (CNN) [12] that is trained on the im-
age data of the object classes in each increment. The model
does not train on any of the objects learned in the previous
increments (sessions) and therefore it catastrophically for-
gets the previously learned objects. More details about this
model can be found in [22].

For the second model, we consider a SOTA CL approach
designed for robotics applications [4, 5]. This approach,
termed centroid-based concept learning (CBCL) [3], uses
a CNN pre-trained on the ImageNet dataset [25] as a fea-
ture extractor for object images. In each increment t, CBCL
clusters the feature vectors of all the object classes in the in-
crement and generates a set of centroids Cy = {cy1, ..., cyny

}
for each object class separately, where ny is the total num-
ber of centroids for class y. CBCL avoids forgetting by
generating separate centroids for each class in a new incre-
ment t. For the classification of a new object, CBCL uses
a weighted voting scheme to find the most common class
(prediction for the test object) among the closest centroids
to the test feature vector. More details about CBCL can be
found in [4]. CBCL has been shown to produce promising
results when learning from systematically collected object
datasets by experts. However, it was never trained or tested
in real-time with human participants. In this paper, we in-
tegrate both CBCL and FT in a fully-autonomous system
that allows users to interact with these models in real-time
through the Fetch mobile manipulator robot.

3. Method
To answer the three research questions, we tested the fol-
lowing hypotheses, related to those research questions, in
a repeated measures study where users interacted over five
sessions with the system (Section 2):

H1.1 A forgetful robot is perceived as less trustworthy than a



robot that remembers most previously learned objects.

H1.2 Task load for teaching and testing a forgetful robot is
less than a robot that remembers most previous objects.

H2.1 Users’ trust decreases in the robot over multiple ses-
sions regardless of the CL model.

H2.2 The task load for teaching the robot increases over
multiple sessions.

H3.1 The overall task load for teaching the robot is minimal.

Where, Hn.m is the mth hypothesis related to the research
question n, e.g. H1.2 is the second hypothesis for RQ1.

3.1. Participants

We recruited 40 participants (19 female (F); 21 male (M),
all students) from the University of Waterloo, between the
ages of 18 and 37 years (M = 23.48, SD = 4.49). 20
participants (ages: M = 24.15, SD = 4.21, 10 F, 10
M) were randomly assigned to the FT condition, and the
other 20 (ages: M = 22.78, SD = 4.68, 9 F, 11 M) were
randomly assigned to the FSIL condition. The participants
had diverse backgrounds in terms of their majors, but most
of them were engineering and computer science students.
Based on their self-assessments in a pre-experiment survey,
40% of the participants reported that they were familiar with
robot programming, 55% reported that they had previously
interacted with a robot, 5% were familiar with the Fetch
robot, and 10% had previously participated in an HRI study.
All procedures were approved by the University of Water-
loo Human Research Ethics Board.

3.2. Measures

To verify the hypotheses and thus evaluate the different
learning models, we applied the following measures in both
experimental conditions.

Subjective Measures. After each trial, we asked partic-
ipants to fill in the following questionnaire scales as sub-
jective measurements aimed to test the hypotheses. We
measured people’s trust in the robot using the cognition-
based trust subscale of Madsen’s Human-Computer Trust
(HCT) questionnaire [18] to address H1.1 and H2.1. The
scale contains six individual questions that can be rated on
a 5-point Likert scale, ranging from “Strongly disagree”
to “Strongly agree”. Additionally, we used the Nasa-Task
Load Index (NASA-TLX) [10] to estimate participants’ men-
tal workload to gain insights about H1.2, H2.2, and H3.1.
TLX is comprised of six questions that participants rate on
a 21-point scale, ranging from “Very low” to “Very high”,
resulting in a single factor.

Objective Measures. We also used an objective mea-
sure to analyze the performance of the two CL approaches.
Classification accuracy per session (increment) has been
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Figure 2. Boxplots for cognition based trust scores on the HCT
scale, ranging from 1 to 5. Significance levels (∗ := p <
.05; ∗∗ := p < 0.01) are indicated on bars between the columns.

commonly used in the CL literature [22, 29] for quanti-
fying the performance of CL models for object recogni-
tion tasks. Therefore, for each session, during the testing
phase, we recorded the total number of objects tested by
the participant and the total number of objects that were
correctly found by the robot. Using this data, we cal-
culated the accuracy A of the robot in each session as:
A = number of objects correctly found

number of objects tested

4. Results
We evaluated all questionnaire scales using a Wilcoxon rank
sum test [32] comparing the scores between the two models
and five sessions, respectively. For the remainder of the
paper, we term the finetuning model as FT, and the FSIL
model CBCL, as FSIL.

4.1. Cognition based trust

Scores for cognition-based trust on HCT are calculated as
mean values of six individual items with a minimum value
of 1 and a maximum value of 5, resulting in an overall value
of µ = 2.37, σ = 0.92. Figure 2a details how this score
differs between the subsequent experimental sessions. In
particular, as displayed in Figure 2b, trust decreases signif-
icantly only in the FT condition when comparing the first
session with any of the subsequent sessionsWhen only con-
sidering the FSIL condition, no significant differences in
scores can be observed between any of the sessions.

Moreover, cognition based trust scores are significantly
different between the FSIL condition (µ = 2.83, σ =
0.639) and FT condition (µ = 1.865, σ = 0.91) when look-
ing at all sessions combined, (p < 0.0001,W = 1698), and
consistently across all five sessions (Figure 2a).

4.2. Task load index

Simplified scores for NASA task load index (TLX) are cal-
culated as average values of six individual items (21-point
scale, which is then translated into a score that ranges from
0 to 100). No significant differences were seen between the
two conditions overall (FSIL condition: µ = 26.38, σ =



Figure 3. Average classification accuracy of the two CL models
over 5 sessions.

13.32, FT condition: µ = 28.14, σ = 13.38) or between
any of the five sessions.

4.3. Classification Accuracy

Figure 3 shows the classification accuracy of the two models
averaged over all the participants per model. The classifica-
tion accuracy of both models is similar in the first two ses-
sions (µ =∼50%). However, for the second session, FT’s
accuracy significantly decreased (µ =∼ 27%) and stayed
consistent for the four sessions. FSIL’s accuracy remained
similar in all five sessions. Huge variations were seen in
classification accuracy for both models in all five sessions.
This variation was because of the differences in the accu-
racy of the models for different participants.

5. Discussion
Results obtained in the repeated measures experiment with
the interactive system allow us to validate the hypotheses
introduced in Section 3 and conclusions to be drawn with
regards to the research questions in Section 1.

In comparison to other studies [24], overall cognition-
based trust is rated at mediocre levels only. Such a result is
within our expectations since in CL approaches (including
FSIL) forgetting plays an important role and the cognitive
function of the system is therefore not reliably identifiable
by the user. Moreover, the imperfect nature of object teach-
ing might have influenced the user’s impression of the sys-
tem, because even the FSIL approach achieved only ∼ 50%
classification accuracy in all sessions. Considering the two
conditions, trust towards the system drops in the FT con-
dition as opposed to the FSIL condition, where it remains
on similar levels. This indicates that people, over time, lose
trust in a model that forgets learned objects but they keep
a similar amount of trust if it remembers previous objects.
As a consequence, we can accept H1.1 but we only find
evidence for H2.1 in the FT condition. Hence H2.1 can
only be confirmed partially. This result is supported by the
experiment’s objective measures since trust seems to cor-
relate with the classification performance of both models.
The classification accuracy for FT condition decreased be-

cause of forgetting and so did the trust. For FSIL condition,
both the trust and the accuracy stayed similar. Further, note
that although it might be expected that trust in an imper-
fect robot (FT condition) would drop, Chi et al. [7] showed
that trust towards an imperfect robot evolves over multiple
interactive sessions, if participants are involved in directly
teaching the robot. Their study, however, was not conducted
with an embodied agent or with continual learning models.
Therefore, it was imperative for us to conduct the study with
both CL models integrated with a fully autonomous robot,
to understand participants’ trust towards continual learning
robots that might forget previous objects.

With an overall low task load index, H3.1 can be ap-
proved firmly. Both models had similarly low task load rat-
ings, which is expected for FT condition as the model is
simple and it continues to forget previous objects. However,
even for more complex models that mitigate forgetting, par-
ticipants’ workload did not increase. Neither the accuracy
of the model nor any subsequent iterations have an effect on
the task load and hence H2.2 has to be rejected. Similarly,
H1.2 has to be rejected since we cannot find evidence that
would support any difference between the conditions with
regard to task load. There is no correlation between the
task load and the model’s performance. However, task load
seems to be linked with the total number of images shown
per object, as participants for both models showed only a
few images per object. These results are quite promising as
they indicate the feasibility of personalized continual learn-
ing robots that learn from the users. The results also suggest
that researchers might need to focus more on the task (and
task load) than the choice of the model alone when devel-
oping continual learning robots.

6. Conclusions
In this work, we designed a novel user study to under-
stand human perceptions of a continual learning robot while
teaching and testing the robot over five sessions. We con-
ducted a between-subject study with two CL models and
asked participants about their perceptions of the robot in
terms of trust and task load of the system, after directly
teaching and testing the robot over five sessions. Our re-
sults indicate that users’ perceptions of trust are negatively
affected by forgetting of the CL models. Our results also in-
dicate that the performance of even the SOTA CL models is
unreliable (only ∼50% accuracy) when learning from users
instead of learning on static datasets. Therefore, with the
current SOTA CL models, continual learning robots are not
perceived to be very trustworthy by their users. However,
the task load for teaching and testing the robot stayed low
and was not affected by the choice of the CL model. Our
results indicate that future CL research should also focus on
the task load and the needs and tendencies of the users when
designing CL models that learn through human interactions.
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A. Fetch Mobile Manipulator Robot

Manipulator robots with an RGB-D camera are well-suited
for recognizing and manipulating objects. In our setup, we
use the Fetch mobile manipulator robot [33]. Fetch consists
of a mobile base and a 7 DOF arm. The robot also con-
tains an RGB camera, a depth sensor, and a Lidar sensor.
These sensors can be used for 3D perception, slam map-
ping, and obstacle detection in the robot’s environment. In
our setup, we do not ask the robot to manipulate objects
or move its base, allowing us to solely focus on continual
learning which is principally about learning and recogniz-
ing objects. We mainly use the RGB-D camera to recog-
nize objects and the 7 DOF arm to point to objects. We use
ROS packages available with the Fetch robot for moving
the torso, and the arm of the robot. We did a safety anal-
ysis of the robot (approved by our University’s ethics re-
view board) and also adopted several mitigating strategies.
Therefore, the robot was considered safe to be used with
human participants in our study.

As there can be multiple objects on the table in front of
the robot’s camera, we process the RGB images further by
passing them through a generic object detector [23]. The
object detector finds regions in the image that are likely to
contain objects (Figure 4). The detected regions are filtered
using non-max suppression [13] to remove any overlaps.
We also filter out the detected objects that are not on the
table (background objects, participant interacting with the
robot as seen in Figure 4) using the depth perception of the
objects. The resulting regions are cropped into separate im-
ages for objects detected on the table and then forwarded to
the CL model.

B. Graphical User Interface

For users to be able to interact and teach the robot differ-
ent objects in an open-ended manner, we created a sim-
ple graphical user interface and deployed it on an Android
tablet. Figure 4 shows a screenshot of the GUI. The top
left side of the GUI shows the pre-processed camera output
of the robot which contains bounding boxes for detected
objects. The camera output was used as a transparency de-
vice so that the participants could clearly understand what
the robot was seeing on the table. On the bottom left of
the GUI, there is a toggle button that can be used to start a
teaching session with the robot. Once the button is pressed,
it turns green indicating that the system was in the teaching
phase. After starting the teaching phase, participants can
type the name (class label) of the objects in the space below
the toggle button. Participants can save an image of the ob-
ject using the save button next to the empty space. The bot-
tom right of the GUI contains another toggle button that can
be used by the participants to start the testing phase. The
button turns green once pressed. During the testing phase,

Figure 4. The graphical user interface (GUI) used to interact with
the robot. The RGB camera output with bounding boxes is on the
top left. The buttons at the bottom can be used to teach objects to
the robot and ask it to find objects in the testing phase. The top
right of the GUI shows information sent by the robot to the user.

participants can type the name (class label) of the object to
be found on the table in the space below the testing toggle
button. Participants can then press the Find Object button
next to the empty space to ask the robot to find the requested
object on the table. Finally, the top right section of the GUI
shows the messages communicated by the robot to the user
during the session. The robot also spoke these messages
using a text-to-speech module available in ROS.

C. Overall Results of the Study
Tables 1 shows the overall statistics of the study across all
40 participants.



Table 1. Detailed results for the two questionnaires in the two conditions. NS stands for not significant.

Trust
FT FSIL

Session Value µ σ µ σ p W
1 2.49 0.97 3.02 0.50 0.0353 122
2 1.86 0.77 3.05 0.47 3.2×10−5 34.5
3 1.61 0.84 2.79 0.67 0.0001 50.5
4 1.74 0.93 2.64 0.70 0.0054 72.5
5 1.52 0.71 2.64 0.73 0.0003 49.5
all 1.86 0.91 2.83 0.64 5.3×10−13 1698

TLX
FT FSIL

Session Value µ σ µ σ p W
1 28.5 9.98 24.4 8.16 NS NS
2 29.7 11.9 25.6 13.5 NS NS
3 27.6 15.2 25.2 11.9 NS NS
4 27.1 14.9 27.8 14.6 NS NS
5 27.3 16.3 28.9 17.6 NS NS
all 28.1 13.4 26.4 13.3 NS NS
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