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Abstract

For long-term deployment in dynamic real-world environments, assis-
tive robots must continue to learn and adapt to their environments.
Researchers have developed various computational models for continual
learning (CL) that can allow robots to continually learn from limited
training data, and avoid forgetting previous knowledge. While these
CL models can mitigate forgetting on static, systematically collected
datasets, it is unclear how human users might perceive a robot that
continually learns over multiple interactions with them. In this paper,
we developed a system that integrates CL models for object recognition
with a Fetch mobile manipulator robot and allows human participants
to directly teach and test the robot over multiple sessions. We con-
ducted an in-person study with 60 participants that interacted with
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our system in 300 sessions (5 sessions per participant). We conducted
a between-subject study with three different CL models to understand
human perceptions of continual learning robots over multiple sessions.
Our results suggest that participants’ perceptions of trust, competence,
and usability of a continual learning robot significantly decrease over
multiple sessions if the robot forgets previously learned objects. However,
the perceived task load on participants for teaching and testing the robot
remains the same over multiple sessions even if the robot forgets previ-
ously learned objects. Our results also indicate that state-of-the-art CL
models might perform unreliably when applied on robots interacting with
human participants. Further, continual learning robots are not perceived
as very trustworthy or competent by human participants, regardless
of the underlying continual learning model or the session number.

Keywords: continual learning, perceptions of robots, robot learning from
human teachers, long-term human-robot interaction

1 Introduction

Assistive robots are becoming an integral part of our society in a variety of
roles, such as caregivers, cleaning robots, or home assistants [1–6]. However, for
robots to be able to assist people in daily environments over a long period of
time, they must adapt to the changing needs of their users and their environ-
ments. As it would be impossible to pre-program all the tasks a robot needs to
perform and all the items a robot might encounter in a person’s daily environ-
ment, robots will need to continually learn interactively on the fly from their
users who are likely unfamiliar with robotics and machine learning (ML).

To operate in daily environments, a general task for a robot is to learn
and understand the objects in its environment [7–10]. Such a task is central
to a variety of different service tasks such as fetching and carrying objects,
cooking and meal preparation, doing the dishes and the laundry, etc. Various
machine learning models have been developed in the last decade for achiev-
ing remarkable performance on object recognition tasks [11, 12]. However,
one of the main challenges faced by robots using ML models to continually
learn objects is catastrophic forgetting [13, 14]. Catastrophic forgetting1 occurs
when a continual learning (CL) agent forgets the previously learned knowledge
when learning new information [15]. This, however, is in contrast with human
memory that might gracefully forget detailed experiences but keeps abstract
knowledge consolidated in long-term memory [16, 17]. One approach to avoid
forgetting is to store the data of the previously learned tasks in memory and
retrain the CL agent on the previously stored data plus the new information.
However, this can lead to computational processing and memory storage issues

1Note that the term catastrophic forgetting is mainly used in Machine Learning literature to
describe the phenomenon of an ML model forgetting most past knowledge on static datasets.
However, when interacting with real users, the perception of forgetting might be far from
“catastrophic”.
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for real-world robots with real-time constraints, limited onboard memory, and
computational resources. In recent years, different research directions (some
inspired by neuroscience [18, 19]) have been taken in the field of continual
machine learning to mitigate the catastrophic forgetting problem without stor-
ing and relearning the complete dataset of the previous tasks [20–26]. While
state-of-the-art (SOTA) CL models alleviate catastrophic forgetting, they still
suffer from some forgetting when learning over a large number of repeated
sessions [15, 18, 27–29].

Another challenge faced by continual learning robots is that their users
might not provide a sufficiently large number of data (examples) to train an ML
model. In the past few years, robotics researchers developed CL models that
can learn continually from only a few training examples per object, while also
mitigating catastrophic forgetting [30–32]. This problem is known as Few-Shot
Incremental Learning (FSIL) [30, 31, 33, 34]. Although FSIL approaches have
produced promising results on systematically collected “non-social” datasets
by the experimenters, it is unknown how these systems might perform when
learning from human participants. Further, it is also unknown how people
might perceive robots that continually learn through interaction with their
users.

For the long-term deployment of robots in human environments, it is criti-
cal that we understand how humans might perceive such robots, as these robots
will interact with and operate around humans [4, 35–37]. Trust is one of the
essential components for people’s relationships with autonomous robots [38–
41]. Most prior research showed that people lose trust in autonomous robots
that might be imperfect. Research also showed that people’s trust in robots
could strengthen over time if they are involved in teaching the robot [42], how-
ever, this research was conducted with a simulated robot that did not actually
learn from user instructions and used pre-programmed behavior. Other impor-
tant factors that influence people’s relationships with robots over the long term
are perceptions of social attributes and usability of robots [4, 43–46]. Finally,
for autonomous robots that learn through human teaching, it is also imper-
ative to understand human perceptions of task load for interacting with and
teaching the robot [47, 48]. Most of the prior research on analyzing human per-
ceptions of robots has been conducted in a single interaction scenario, using
hand-crafted, heuristic approaches. To the best of our knowledge, we know of
no other work on testing CL or FSIL models deployed on robots that directly
learn from human users on the fly over multiple interactions, which is the focus
of this paper.

Here, we consider a system for socially guided continual learning (SGCL)
and conduct an in-person user study to explore how people perceive a robot
that continually learns common household objects over multiple interactions.
We developed a system that integrates a graphical user interface (GUI) on
an Android tablet with a CL model deployed on the Fetch mobile manipu-
lator robot [49]. In this system, we focused solely on the continual learning
of objects and avoided adding any extra social behaviours to the robot that
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might affect human perceptions of the robot. We performed a long-term
between-participant user study (N=60) where participants interacted with a
fully autonomous Fetch mobile manipulator robot that used three different
CL models: one that suffers from forgetting on static “non-social” datasets,
another state-of-the-art (SOTA) approach for FSIL that mitigates forgetting,
and the upper bound approach that stores and retrains all of the previous data
when learning new information. We conducted 300 interactive sessions with 60
participants, where each participant taught 25 household objects to the robot
in 5 sessions with 5 objects per session. We used four questionnaires in the
study to answer the following research questions:
RQ1 How do human perceptions of trust, social attributes, task load, and

usability evolve when interacting with a continual learning robot over
multiple sessions?

RQ2 Is there a difference in participants’ perceptions of trust, social
attributes, task load, and usability of a continual learning robot for
different continual learning models?

2 Related Work

Continual Learning. The standard continual learning (CL) problem for an
object recognition task is defined as: Suppose a CL model M gets a stream
of labeled training datasets D1, D2, ... over multiple increments, where Dt =

{xt
i, y

t
i}

|Dt|
i=1 is the dataset in the tth increment, xt

i is the ithe data point in
Dt with label yti . L

t is the set of object classes in the tth training dataset,
where Lj ∩Lk = ∅,∀j ̸= k. During the testing phase, if the model M is given
the increment label when predicting the class label of a data point, this setup
is known as task-incremental learning [18, 24, 27]. In contrast, for the class-
incremental learning (CIL) setup, the model M is tested in increment t on
data points belonging to any of the previous classes (L1, ..., Lt) without access
to the increment label [15, 50–52]. CIL is a more realistic continual learning
setup, as robot users might not be willing to (or even remember) the increment
label when asking the robot to predict the class label of an object. Therefore,
we mainly review CIL approaches in this paper.

Class-Incremental Learning. Various research directions have been taken
in the past to develop CIL models that can mitigate the catastrophic for-
getting problem [15, 30, 50, 51, 53]. Most existing class-incremental learning
(CIL) methods avoid catastrophic forgetting by storing a portion of the train-
ing samples from previous classes and retraining the model on a mixture of
the stored data and new data [15, 50, 51, 54]. However, this approach does
not scale as additional data exhausts memory capacity limiting performance
in real-world applications. To avoid this problem, some CL approaches use
regularization techniques [18, 27]. Although these approaches solve the mem-
ory storage issues, their performance is significantly inferior to approaches
that store old class data. Another set of approaches uses generative replay
to avoid storing raw data and generate old data using stored class statistics
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[19, 28, 29, 55, 56]. Generative approaches, however, do not scale well to learn-
ing over longer sequences and their performance deteriorates drastically. One
of the major concerns for all CIL approaches is that they perform poorly when
learning from limited training data [30, 31]. Therefore, they are not suitable
for learning from human users who might be unwilling to provide hundreds or
thousands of images per object class.

Few-Shot Incremental Learning. In the past couple of years, CL researchers
developed class-incremental learning models that continually learn from a
small number of training examples per class. This setup is known as few-
shot incremental learning (FSIL) [30, 31]. All of these approaches train a CL
model on a large number of object classes (called base classes) with a large
dataset in the first increment to learn a good representation of the data.
In the next increments, the model utilizes the representation learned in the
first increment to learn new classes with only a few training images per class
[30, 31, 33, 34, 57, 58]. These approaches, however, were only tested on static,
simple datasets (e.g. MNIST [59]) and not on real robots that might not have
perfect data available. Although a few CL approaches [7–9] have been tested
with robots in recent years, most of them have been tested on only a small
number of object classes (usually 10 or fewer). Further, none of these FSIL
approaches were tested with real participants, and the data was captured by
the experimenters in systematically controlled setups. Non-expert users, how-
ever, might not be aware of the underlying CL models, therefore they might
provide imperfect data to the robot during teaching (or testing). It is also
unclear how human participants might perceive CL systems on robots, and if
they consider such systems to be feasible and easy to use.

Robot Learning with Human Teachers. A few studies have been conducted
in the past with human participants to teach robots different manipulation
tasks [60] or object classes [10, 61]. For example, Bobu et al. [60] developed
a reinforcement learning technique for a manipulator robot that can perform
simple manipulation tasks with human assistance. Thomaz et al. [10] devel-
oped an object learning system that allowed a robot to learn object names
and simple affordances from interactions with human participants. Human
participants taught 6 simple objects to a social robot, which used a support
vector machine (SVM) based method for learning these objects. Thomaz et
al. showed that there were significant performance differences when machine
learning models learned from human teachers rather than using systematically
collected object datasets. Although these studies developed and tested ML
techniques with human teachers, they were only tested in a single interaction
with the users. Note that a single teaching interaction with the robot might
not be a correct indicator of human perceptions of a continual learning robot,
as user perceptions might change when teaching and testing the robot for the
same task over multiple interactions (see Section 5 for results). In addition,
single-session research with robots can suffer from the novelty effect which is
well known in HRI research [62–64].
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Fig. 1: (Left) Experimental layout for the SGCL setup with the participant and
the robot. (Right) Corresponding real-world setup.

Perceptions of Robots. For the long-term deployment of robots in human
environments, it is critical that we understand how humans might perceive such
robots [4, 35–37]. Humans ascribe social traits and meaning to any agent in
motion [65], but controlled experiments can help understand humans’ percep-
tions about different aspects of robots [66–68]. For example, different studies
have been conducted in the past that evaluate humans’ trust in social robots
exhibiting erroneous behaviors [38, 39, 69, 70]. Most of these studies indicated
that the robot’s performance on different tasks might affect humans’ trust
in the robot. Other studies analyzed human perceptions of social robots in
terms of competence and warmth for a variety of tasks [35, 43]. Studies have
also been conducted for domestic and industrial robots to understand their
perceived usability [4, 71–73]. Although a few of these studies have been con-
ducted to understand long-term interaction (maximum three sessions) with
robots [35, 70], these studies used hand-crafted, heuristic approaches, and not
any modern CL approaches. Unlike these prior research, a unique aspect of our
study is that the robot directly learns new objects through human teaching
and then uses the learned knowledge to autonomously find objects.

Recently a few studies analyzed human perceptions of robots learning
directly from human demonstrations. For example, Schrum et al. [74] tested
how human perceptions changed when the robot provided feedback related to
human teaching. This approach, however, was only tested in a single session
and was not used to test a continual learning approach. Liu et al. [75] pre-
sented a framework for learning online from human users but did not test their
approach with real participants.

In contrast to previous work, to the best of our knowledge, we conducted
the first user study at the intersection of continual learning and HRI, to
understand human perceptions of a robot regarding various aspects (trust,
competence, system usability), when the robot continually learns from human
users over five sessions.
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Fig. 2: Our complete SGCL system. Processed RGB images from robot’s camera
are sent to the GUI for transparency and also passed on to the CL Model. The user
sends object names to the CL model either for training the CL model or finding an
object. The arm trajectory planner takes point cloud data, processed RGB data, and
predicted object labels from the CL model as input and sends the arm trajectory for
the Fetch robot to point to the object.

3 Socially Guided Continual Learning

We studied human perceptions of a continual learning robot in the context of
an object recognition task. In this setup, the robot learns household objects
from the user (in multiple sessions) on a table-top environment, and then
finds and points to the requested object on the table after learning them from
the user. Figure 1 shows the table-top experimental setup for this study. The
simplicity of the setup and the task makes it clear what the user should do
to teach the robot different objects and what the robot should do to find the
learned objects during the testing phase.

For this setup, we consider a socially guided continual learning (SGCL)
system for the object recognition task, which integrates continual learning (CL)
models with the robot for interactive and transparent learning from human
users. Figure 2 shows the SGCL system for the object recognition task. In
this system, in each session (or increment) t the user interacts with the robot
through a graphical user interface (GUI) to teach the robot Lt number of
objects. The robot captures images of the Lt objects and pre-processes them,
getting the labels of the processed object images from the user to generate a

dataset Dt = {xt
i, y

t
i}

|Dt|
i=1 , where xt

i is the ith image in the dataset with the
class label yti . The CL model M then trains on the dataset Dt. Note that
unlike static CL setups (such as FSIL [30]), the number of objects per object
class in a session is not fixed as it is dependent on the number of times the
user teaches an object to the robot. Further, there can be an overlap in the
object classes taught in different sessions depending on how the user labels the
objects i.e. Lj ∩Lk ̸= ∅,∀j ̸= k. For example, the user can name two different
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cups in different sessions with different names, such as “green cup” and “red
cup”, or they can name both of the cups as “cup”.

In the testing phase, the robot receives the request from the user through
the GUI to find an object. The robot passes the pre-processed images to the CL
model to get the predicted object labels. If the object is found, the robot finds
the 3D location of the object on the table and points to the object using its
arm. Note that the user has flexibility in terms of the total number of objects
to be tested in an increment, as well as which objects to test (old or new
objects). Therefore, unlike static CL setups, the test set of objects is not fixed
in each session. Due to this flexibility in SGCL, results for CL models were
quite different from the results on static datasets (see section 5 for details).
It was important for us to introduce this flexibility for the user, to make the
setup more similar to real-world scenarios.

3.1 Continual Learning Models

The main goal of our study is to do an in-depth analysis of how users per-
ceive CL models over repeated, long-term interactions. To do such an analysis,
it is important to choose a meaningful baseline. The naive finetuning (FT)
approach [15] has been used extensively in CL literature as a baseline on static
datasets. Therefore, we chose to test FT as our study’s baseline model. The
FT approach uses a convolutional neural network (CNN) [11] that is trained
on the image data of the object classes in each increment (i.e. in an interactive
session with the user). The model does not train on any of the objects learned
in the previous increments (sessions) and therefore it forgets the previously
learned objects. More details on this model can be found in [9, 15]. Please see
Section A for further details on the choice of FT as a baseline for our study.

For the second model, we consider a SOTA CL approach specifically
designed for FSIL in robotics applications [30]. This approach, termed centroid-
based concept learning (CBCL), uses a CNN pre-trained on the ImageNet
dataset [76] as a feature extractor for object images. In each increment, t, the
model receives a small number of images for some object classes and extracts
feature vectors for the object images using the pre-trained feature extractor.
CBCL then clusters the feature vectors of all the object classes in the incre-
ment and generates a set of centroids Cy = {cy1, ..., cyny

} for each object class
separately, where ny is the total number of centroids for class y. CBCL avoids
forgetting by generating separate centroids for each class in a new increment
t, without changing the centroids of the previously learned classes. For the
classification of a new object, CBCL finds the distance of the feature vector of
the test object from the centroids of all the object classes. CBCL then uses a
weighted voting scheme to find the most common class among the closest cen-
troids to the test feature vector. The most common class is predicted as the
object class for the test feature vector. More details about CBCL can be found
in [30]. CBCL has been shown to produce promising results when learning from
systematically collected object datasets by experts (researchers). However, it
was never trained or tested in real-time with human participants.
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Finally, for the third model, we consider the batch learning (called joint
training (JT) in this paper) approach that stores the image data of the object
classes from previous increments and retrains using stored data when learning
new objects. JT has been used in CL literature as an upper bound for continual
learning on static datasets. JT trains a CNN model on a combined image
dataset of the new and old object classes in each increment, and therefore its
training time continues to increase with each increment. More details about
this model can be found in [15, 51]. In this paper, we integrate FT, CBCL, and
JT in a fully-autonomous system that allows users to experience these different
ML models in real-time through the Fetch mobile manipulator robot [49].

4 Method

To answer the two research questions (RQ1,2 in Section 1), we tested different
hypotheses, related to those research questions, in a repeated measures study
where users interacted over five sessions with the system (Section 3).

The following hypotheses are guided by previous research that was dis-
cussed in Section 2: Prior HRI research showed that users’ perceptions of
trust, usability, and social attributes are correlated with the performance of
the robot, whereas the perceptions of task load are correlated to the time and
effort spent in interacting with the robot. Further, prior CL research showed
that CL models can forget previous knowledge over time, and thus their per-
formance decreases. However, there is a difference in the rate of forgetting for
different CL models.

Note, Hn.m is the mth hypothesis related to the research question n, e.g.
H1.3 is the third hypothesis to answer RQ1.
Trust
H1.1 Users’ perceptions of trust decrease in the robot over multiple sessions

regardless of the CL model.
H2.1 A robot that forgets is perceived as less trustworthy than a robot that

remembers most previously learned objects.
H2.2 A robot that retrains on all previous objects is perceived as more

trustworthy than a robot that does not retrain on all previous objects.
Social Attributes
H1.2 Users’ perception of the social attributes of the robot decreases over

multiple sessions regardless of the CL model.
H2.3 The social attributes of a robot that forgets are perceived to be worse

than those of a robot that remembers most previous objects.
H2.4 The social attributes of a robot that retrains on all previous objects

are perceived to be better than those of a robot that does not retrain
on all previous objects.

Task Load
H1.3 Users’ perception of the task load for teaching the robot increases over

multiple sessions regardless of the CL model.
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H2.5 The task load for teaching and testing a robot that forgets is less than
a robot that remembers most previous objects.

H2.6 The task load for teaching and testing a robot that retrains on all
previous objects is more than a robot that does not retrain on all
previous objects.

Usability
H1.4 Users’ perceptions of the usability of the robot decrease over multiple

sessions, regardless of the CL model.
H2.7 Users perceive a robot that remembers most previous objects to be

more useful and easier to use than a robot that forgets.
H2.8 Users perceive a robot that retrains on all previous objects to be more

useful and easier to use than a robot that does not retrain on all
previous objects.

4.1 Fetch Mobile Manipulator Robot

Manipulator robots with an RGB-D camera are well-suited for recognizing
and manipulating objects. In our setup (Figure 1), we use the Fetch mobile
manipulator robot [49]. Fetch consists of a mobile base and a 7 DOF arm.
The robot also contains an RGB camera, a depth sensor, and a Lidar sensor.
These sensors can be used for 3D perception, SLAM mapping, and obstacle
detection in the robot’s environment. In our setup, we do not ask the robot to
manipulate objects or move its base, allowing us to solely focus on continual
learning which is principally about learning and recognizing objects. We mainly
use the RGB-D camera to recognize objects and the 7 DOF arm to point to
objects. We use ROS packages available with the Fetch robot for moving the
torso, and the arm of the robot. We did a safety analysis of the robot (approved
by our University’s ethics review board), and also adopted several mitigating
strategies. Therefore, the robot was considered safe to be used with human
participants in our study.

As there can be multiple objects on the table in front of the robot’s camera,
we process the RGB images further by passing them through a generic object
detector [77]. The object detector finds regions in the image that are likely to
contain objects (Figure 3). The detected regions are filtered using non-max
suppression [78] to remove any overlaps. We also filter out the detected objects
that are not on the table (background objects, participant interacting with
the robot as seen in Figure 3) using the depth perception of the objects. The
resulting regions are cropped into separate images for objects detected on the
table and then forwarded to the CL model.

4.2 Graphical User Interface

For users to be able to interact and teach the robot different objects in an
open-ended manner, we created a simple graphical user interface and deployed
it on an Android tablet. Figure 3 shows a screenshot of the GUI. The top left
side of the GUI shows the pre-processed camera output of the robot which
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Fig. 3: The graphical user interface (GUI) used to interact with the robot. The RGB
camera output with bounding boxes is on the top left. The buttons at the bottom
can be used to teach objects to the robot and ask it to find objects in the testing
phase. The top right of the GUI shows information sent by the robot to the user.

contains bounding boxes for detected objects. The camera output was used as
a transparency device so that the participants could clearly understand what
the robot was seeing on the table. On the bottom left of the GUI, there is
a toggle button that can be used to start a teaching session with the robot.
Once the button is pressed, it turns green indicating that the system was in
the teaching phase. After starting the teaching phase, participants can type
the name (class label) of the objects in the space below the toggle button.
Participants can save an image of the object using the save button next to
the empty space. The bottom right of the GUI contains another toggle button
that can be used by the participants to start the testing phase. The button
turns green once pressed. During the testing phase, participants can type the
name (class label) of the object to be found on the table in the space below the
testing toggle button. Participants can then press the Find Object button next
to the empty space to ask the robot to find the requested object on the table.
Finally, the top right section of the GUI shows the messages communicated by
the robot to the user during the session. The robot also spoke these messages
using a text-to-speech module available in ROS.

Note that we did not use an NLP (natural language processing) based
interaction system because designing an open-ended NLP system for teach-
ing objects is a challenging problem [79], and it is prone to additional errors
during the speech-to-text and natural language understanding (NLU) phases.
These errors could distract participants from the main research goal of the
study (continual learning of household objects). Our goal was to study partic-
ipants’ perceptions of the continual learning system, and not to evaluate the
communicative capabilities of the robot.
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4.3 Participants

We recruited 63 participants (35 female (F); 28 male (M), all students) from
the University of Waterloo, between the ages of 18 and 37 years (M = 23.12,
SD = 4.04). Out of the 63 participants, three dropped out before complet-
ing the study. Out of the 60 participants, all three conditions were randomly
assigned 20 participants each (ages: M = 22.7, SD = 4.58, 9 F, 11 M for
CBCL condition, ages: M = 24.53, SD = 4.03, 10 F, 10 M for FT condition,
ages: M = 22.2, SD = 2.96, 15 F, 5 M for JT condition). Based on their self-
assessments in a pre-experiment survey, 35% of the participants reported that
they were familiar with robot programming, 55% reported that they had pre-
viously interacted with a robot, 5% were familiar with the Fetch robot, and
8% had previously participated in an HRI study. For the rest of the paper,
we call participants with prior robot programming experience ‘experts’ and
the rest of the participants ‘non-experts’. All procedures were approved by the
University of Waterloo Human Research Ethics Board.

4.4 Procedure

We conducted five repeat sessions (each ∼20-30 minutes) with each participant
in a robotics laboratory. All sessions were video recorded. Each participant
was randomly assigned to one of the three experimental conditions using one
of the three CL models (CBCL, finetuning, and joint training). Before their
first session, each participant was asked to complete a consent form and a pre-
experiment survey online (using Qualtrics [80]). After completing the consent
form and the pre-experiment survey, the experimenter greeted the participant
and gave a brief oral introduction to the experiment. Participants were told to
consider Fetch as their personal household robot and they can teach the robot
household objects over five days such that the robot learns 25 objects over
time. Next, the participant was directed to the study area of the lab and was
handed an Android tablet with the GUI (see Figure 3) loaded. The participant
was told that they would first run a demo session with the robot to understand
how to teach and test the robot. The experimenter also mentioned that during
the demo phase, the robot would not be learning any of the objects shown in
front of the camera.

The experimenter explained that each session with the robot will consist of
a teaching phase and a testing (i.e. finding an object) phase. The experimenter
then used a blue cup as a demo object (this object was not used later) and
placed it on the table. The experimenter then asked the participant to stand
in the designated area in front of the table and start a teaching session by
pressing the “Toggle Teaching Session” button on the GUI. Once the button
was pressed, it turned green, and the robot sent a message on the tablet stating,
“Entered teaching mode. You can now start teaching me objects.” The robot
spoke the same message through its speakers. The experimenter then asked
the participant to type the name of the object in the text box below the toggle
button. The participant was also told that they can name the object whatever
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they like. After the participant named the object, they were told that they
can save the object by pressing the “Save Object” button next to the text
box. Once the “Save Object” button was pressed, the robot stated, “[OBJECT
NAME TYPED IN THE TEXT BOX] has been saved”. The experimenter
then mentioned to the participant that they can save each object as many
times as they want by placing the object at different places on the table at
various angles. They further mentioned that a similar procedure can be used to
teach the other four objects in the session. The participant was then told that
once they are finished saving all five objects in a session, they can press the
toggle button again to end the teaching session. Once the button was pressed,
it turned grey, and the robot stated, “I am learning the objects, please wait.”
The robot then stated, “Left teaching mode”. The experimenter explained to
the participant that the robot would learn the objects shown by them in the
session and then communicate to them when it had finished learning and left
the teaching mode.

The experimenter then explained the testing phase to the participant. The
experimenter asked the participant to press the “Toggle Finding Object Mode”
button to start the testing phase of the session. Once the button was pressed, it
turned green and the robot stated, “Entered finding mode”. The experimenter
then placed two other objects on the table alongside the demo object (a total of
three objects on the table). The experimenter then mentioned that during the
testing phase, the participant can place one or up to three (a suggestion, not
a requirement) objects on the table. The experimenter further mentioned that
after placing the objects, the participant can type the name of the object to be
found by the robot in the text box below the toggle button. The experimenter
then asked the participant to type “cup” in the text box to ask the robot
to find this object on the table. Once they finished typing, the experimenter
asked the participant to press the “Find Object” button. After the participant
pressed this button, the robot stated, “I will point to the cup now. Please
make sure that you are at a safe distance from me.” The robot then moved its
torso and arm to point to the cup on the table, and after finishing it stated,
“I am done”. The experimenter then mentioned that the participant could ask
the robot to find the objects taught in the current session and in the previous
sessions by placing them on the table and using the “Finding Object Mode”.
The experimenter then asked the participant to press the “Toggle Finding
Object Mode” button again to leave the testing phase. Once the button was
pressed, it turned grey and the robot stated, “Left finding mode”.

After the demo phase (∼5 minutes), the experimenter gave a paper sheet,
which served as a memory aid, to the participant to write down the names
of the objects taught in the current session. The paper sheet was kept by the
experimenter and handed to the participants at the start of each session. This
way the participants could remember the object names when they needed the
robot to find these objects in the next sessions2. The experimenter then took

2Note that in real-world situations participants will not need to write down the names on a
sheet as they will be interacting with the objects multiple times, but in our setup, it was not
possible to interact with the objects long enough to remember their names from one session to
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the tablet from the participant and loaded the program for the actual session
on the tablet. The experimenter handed the tablet back to the participant
and placed five objects to be taught in the session on one side of the table.
The experimenter then mentioned to the participant that they can start their
session and start teaching the five objects.

The experimenter then went to a secluded area and the participant started
teaching the five objects to the robot. Once the participant finished teaching,
they moved to the testing phase. During the testing phase, they asked the robot
to find the objects taught in the current session and the previous sessions.
After the testing phase was finished, the experimenter came out of the secluded
area and stated, “Thank you for coming today. We have a few questions about
your experience today. Could you please answer them on this tablet?” The
experimenter gave a different tablet to the participant to answer questionnaires
in Qualtrics [80] format. After finishing the questionnaire, the experimenter
thanked the participant. The participant then scheduled their next session.

In the next four sessions (each ∼20-30 minutes), the same procedure was
repeated, except for changing the objects to be taught in each session. Figure
A1 shows the 25 objects used in our study. Participants were also told that
they can bring a maximum of two objects (per session) of their own choice in
sessions 3-5 to teach to the robot. If participants brought their own objects, we
replaced some of the objects from our set (Figure A1) with participants’ objects
(the total number of objects taught over 5 sessions remained 25). Further,
participants did not go through a demo interaction in the next four sessions.
At the end of the last session, the experimenter asked the participant to have
a short interview to answer some questions describing their experience with
the robot. This interview was audio recorded. Participants were remunerated
$30 CAD if they participated in all five sessions. Otherwise, if they did not
complete all five sessions, they were remunerated $6 CAD/session. Analysis
of the audio data collected during the interviews is beyond the scope of this
paper and will be reported in future work.

Examples of the teaching and testing phases are shown in the supplemen-
tary video. Our code is available at https://github.com/aliayub7/cl hri.

4.5 Measures

To verify the hypotheses and thus evaluate the different learning models, we
applied a range of quantitative measures in both experimental conditions.

Subjective Measures. After each trial, we asked participants to fill in the
following questionnaire scales as subjective measurements aimed to test the
hypotheses. We measured people’s trust in the robot using the cognition-based
trust subscale of Madsen’s Human-Computer Trust (HCT) questionnaire [81]
to address H1.1, H2.1 and H2.2. The scale contains six individual ques-
tions that can be rated on a 5-point Likert scale, ranging from “Strongly

the next. Sessions were typically a few days apart. On average, the time elapsed between the first
and the last session was 25.3 days, with a maximum of 52 days. Further, the average time between
any two consecutive sessions was 6.2 days, with a maximum of 29 days.

https://github.com/aliayub7/cl_hri
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disagree” to “Strongly agree”. We further used the Robot Social Attributes
Scale (RoSAS) [82] to measure how people rate the robot’s social attributes to
be able to accept or reject H1.2, H2.3 and H2.4. The scale asks participants
how closely they associate 18 attributes with the robot, using a numeric scale
ranging from 1 to 7. A combination of these items forms three principal factors
“warmth”, “competence”, and “discomfort”. Additionally, we used the Nasa-
Task Load Index (NASA-TLX) [83] to estimate participants’ mental workload
to gain insights about H1.3, H2.5, and H2.6. TLX is comprised of six ques-
tions that participants rate on a 21-point scale, ranging from “Very low” to
“Very high”, resulting in a single factor. Finally, we estimated an overall usabil-
ity score using the System Usability Scale (SUS) [84] to address H1.4, H2.7,
and H2.8. This scale is presented in ten questions on a 5-point scale, ranging
from “1 - Strongly disagree” to “5 - Strongly agree”, to form a single factor.
Note that we were only interested in long-term changes in the robot’s social
perception and hence we only employed RoSAS in the first and last session,
while the other three questionnaires were presented in all five repeat sessions
to allow for observing changes in between sessions.

Objective Measures. We also used an objective measure to analyze the
performance of the three CL approaches and how it correlates with user percep-
tions of trust, social attributes, and usability of the continual learning robot.
Classification accuracy per session (increment) has been commonly used in
the continual learning literature [15, 30, 31] for quantifying the performance of
CL models for object recognition tasks. Therefore, for each session, during the
testing phase, we recorded the total number of objects tested by the partici-
pant and the total number of objects that were correctly found by the robot.
Using this data, we calculated the accuracy A of the robot in each session as:

A =
total number of object correctly found in the session

total number of objects tested in the session
(1)

We also report the average number of times each object was taught by the
participants in the three conditions to determine the task load for teaching the
robot.

5 Results

Visual inspection using quantile-quantile plots as well as applying Shapiro-
Wilk tests for normality [85] suggest that none of the scores obtained using
questionnaire scales are normally distributed, requiring non-parametric tests
to test for potential differences. Consequently, we evaluated all questionnaire
scales using a Wilcoxon rank sum test [86] comparing the scores between the
two models and five sessions, respectively. We also applied Bonferroni cor-
rection [87] with the Wilcoxon rank sum test to avoid false positives in our
multiple statistical hypotheses testing. Subjective measures from question-
naires, as described in Section 4.5 are discussed in more detail below, followed
by a brief analysis of each model’s classification accuracy. For the remainder
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Fig. 4: Boxplots for cognition based trust scores on the HCT scale, ranging
from 1 to 5. Significance levels (∗ := p < .05; ∗∗ := p < 0.01; ∗ ∗ ∗ := p <
0.001) are indicated on bars between the columns.

of the paper, we term the finetuning model as FT, the few-shot incremental
learning (FSIL) model CBCL, as CBCL, and the batch learning model as JT.

5.1 Cognition based trust

Scores for cognition-based trust on HCT are calculated as mean values of six
individual items with a minimum value of 1 and a maximum value of 5, result-
ing in an overall value of µ = 2.48, σ = 0.79. Figure 4a details how this
score differs between the subsequent experimental sessions. In particular, as
displayed in Figure 4b, trust decreases significantly only in the FT condition
when comparing the first session with any of the subsequent sessions, i.e. when
comparing session 1 (µ = 2.52, σ = 0.96) to session 2 (µ = 1.92, σ = 0.79; p =
0.02584,W = 117), to session 3 (µ = 1.66, σ = 0.81; p = 0.00329,W = 97),
to session 4 (µ = 1.75, σ = 0.88; p = 0.01015,W = 97.5), and when com-
paring to session 5 (µ = 1.51, σ = 0.66; p = 0.00025,W = 69.5). When
considering the CBCL condition, a statistically significant difference is seen
only between session 1 (µ = 3.07, σ = 0.53) and session 4 (µ = 2.63, σ =
0.67; p = 0.03689,W = 137.5), whereas no significant differences in scores can
be observed between any of the sessions for the JT condition.

Moreover, cognition based trust scores are significantly different between the
CBCL condition (µ = 2.86, σ = 0.65) and FT condition (µ = 1.88, σ = 0.89)
with (p < 0.0001,W = 1930.5), and between the JT condition (µ = 2.67, σ =
0.87) and FT condition with (p < 0.0001,W = 7344), when looking at all
sessions combined, and consistently across all five sessions (see Table C2 for
details).
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Fig. 5: Boxplots for competence scores on the RoSAS scale, ranging from 1
to 7. Significance levels (∗ := p < .05; ∗∗ := p < 0.01; ∗ ∗ ∗ := p < 0.001) are
indicated on bars between columns.

5.2 Robot social attributes

Overall scores on RoSAS are calculated by averaging across individual items
that belong to one of the subscales, ranging from 1 to 7. Resulting attribute
scores are warmth: µ = 2.82, σ = 1.36, competence: µ = 4.54, σ = 1.35,
and discomfort : µ = 1.93, σ = 0.89. No significant differences with regard to
warmth or discomfort can be observed when comparing experimental condi-
tions or experimental sessions (Table C5). Competence scores (Figure 5a), are
significantly different between the CBCL condition (µ = 4.77, σ = 1.29) and
the FT condition (µ = 4.01, σ = 1.47) with p = 0.0132,W = 604.5, and
between the JT condition (µ = 4.8, σ = 1.30) and the FT condition with
p = 0.0155,W = 1127 (Table C5). This difference between the conditions is
caused by a difference in ratings after the last session because scores in the
first session are not reliably distinguishable between the conditions (Table C5).
In contrast, scores after the last session differ significantly (p = 0.0065,W =
105.5) between the CBCL condition (µ = 4.49, σ = 1.41) and the FT condi-
tion (µ = 3.27, σ = 1.17), and between the JT condition (µ = 4.63, σ = 1.19)
and the FT condition with p = 0.0013,W = 333.5. Accordingly, scores signif-
icantly drop between sessions only in the FT condition (more details in Table
C5).

5.3 Task load index

Scores for the NASA task load index (TLX) are calculated as average values
of six individual items (21-point scale, which is then translated into a score
that ranges from 0 to 100). For all three models combined, the task load
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index remains at µ = 26.93, σ = 12.19. No significant differences were seen
between the three conditions overall (CBCL condition: µ = 26.4, σ = 13.0, FT
condition: µ = 28.3, σ = 13.3, JT condition: µ = 26.2, σ = 10.3) or between
any of the five sessions (see Table C4 for details).

5.4 Usability

System usability scores are calculated as average values of ten individual ques-
tions (5-point scale, every second item inverted, which is then translated into
a score that ranges from 0 to 100). The overall score is at µ = 70.41, σ = 16.29,
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with significant differences between the CBCL condition (µ = 74.3, σ = 16.6)
and the FT condition (µ = 63.7, σ = 18.8) at p < 0.001,W = 3441, and
between the JT condition (µ = 72.7, σ = 13.6) and the FT condition at
p < 0.001,W = 6521. In terms of individual sessions, the scores significantly
differ between the CBCL condition and the FT condition in sessions 2, 4, and
5, and between the JT condition and the FT condition in sessions 3, 4, and 5
(see Table C3). No statistically significant difference is seen between the CBCL
condition and the JT condition in any of the sessions. When investigating dif-
ferences between the sessions, no significant change can be found in the CBCL
condition and the JT condition, whereas in the FT condition, scores in ses-
sion 1 (µ = 73.3, σ = 14.0) are significantly higher than scores in session 3
(µ = 62.6, σ = 15.9; p = 0.039,W = 130.5), session 3 (µ = 58.2, σ = 22.3; p =
0.023,W = 108), and session 5 (µ = 59.0, σ = 17.4; p = 0.007,W = 107) (see
Figure 6c). No statistically significant difference was seen between sessions 1
and 2.

5.5 Classification Accuracy

Figure 7 shows the classification accuracy of the three models averaged over all
the participants per model. In the first session, the classification accuracy of
both CBCL and FT is similar (µ =∼ 50%), whereas the classification accuracy
of JT is higher (µ =∼ 60%). However, for the second session, FT’s accuracy
significantly decreased (µ =∼ 30%), and it further decreased in the next three
sessions (µ =∼ 25%). CBCL’s accuracy remained similar (µ =∼ 50%) in all
five sessions. JT’s accuracy stayed consistent in the first two sessions (µ =∼
60%), however, it significantly decreased in the third session (µ =∼ 45%) and
stayed consistent for the next three sessions. Huge variations were seen in
classification accuracy for all three models in all five sessions. This variation
was because of the differences in the classification accuracy of the models for
different participants.

For the FT condition we noticed that in later sessions many participants
tested the robot on more new objects than old objects3 which caused the
accuracy of FT for those participants to be comparable to CBCL’s accuracy
(notice the high standard deviation in Figure 7). Also, some users gave the
same name to objects in different sessions. For example, some users named
“green cup” in Session 1, “red cup” in Session 2, and “black mug” in Session
3, as “cup”. In such cases, FT was able to remember the previous instances of
“cup” and thus the test accuracy for FT was higher.

Finally, we also calculated the average number of times each object was
shown to the robot (number of training images per object) in the two condi-
tions. Participants in all three conditions showed a similar number of images
per object (µ = 4.43, σ = 3.47 for CBCL, µ = 5.19, σ = 4.20 for FT, and
µ = 4.82, σ = 3.77 for JT), with the highest average number of images per
object in the FT condition.

3Participants were not told they had to test the robot on old objects. Instead, they had flexibility
regarding which objects they wanted to test in each session.
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Fig. 7: Average classification accuracy of the three CL models over 5 sessions.

6 Discussion

Results obtained in the repeated measures experiment with the interactive
system allow us to validate the hypotheses introduced in Section 4 and con-
clusions to be drawn with regards to the research questions (Section 1). As
a general observation, results seem to be influenced by the change over the
course of repeated sessions, how participants interacted with the models, and
if the model forgot previous objects.

In comparison to other studies [69], overall cognition-based trust is rated at
mediocre levels only. Such a result is within our expectations for CBCL and FT
as forgetting plays an important role and the cognitive function of the system
is therefore not reliably identifiable by the user. However, for JT the result was
surprising as this model theoretically should not suffer from any forgetting. One
reason for mediocre trust towards JT can be that JT was originally designed
to learn from a large number of training samples, whereas participants only
showed a few images per object (Section 5.5) to the robot. Further, over the
five sessions, the robot learned an incrementally larger number of objects for
both CBCL and JT conditions, however, unlike prior work [42], this did not
have an accumulation effect on the perceptions of trust toward the robot. We
believe that the imperfect nature of object teaching might have influenced the
user’s impression of the system because even the CBCL and JT approaches
achieved only ∼ 45 − 60% classification accuracy in all sessions. Considering
the three conditions, trust towards the system is lower in the FT condition as
opposed to the CBCL and JT conditions, where it remains on similar levels,
except between sessions 1 and 3 for the CBCL condition where we saw a
statistically significant drop in trust. This indicates that people, over time, lose
trust in a model that forgets learned objects but they keep a similar amount of
trust if it remembers previous objects. As a consequence, we can support H1.1
but we only find support for H2.1 in the FT condition and for one session



Springer Nature 2021 LATEX template

Human Perceptions of a Continual Learning Robot 21

in the CBCL condition. Hence H2.1 can only be supported partially by our
data. This result is consistent with the experiment’s objective measures since
trust seems to correlate with the classification performance of both models.
The classification accuracy for FT condition decreased because of forgetting
and so did the trust. For CBCL condition, both the trust and the accuracy
levels stayed similar, although accuracy remains ∼50% whilst cognition based
trust decreases slightly during the course of the experiment with a significant
decrease in session 3. For JT condition, accuracy slightly decreased in the final
three sessions, and so did the trust in the robot. Finally, our data support
H2.2 partially, as there is a statistically significant difference in perceptions
of trust between the FT condition and the other two conditions, but there is
no significant difference observed between CBCL condition and JT condition.
These results are promising indicating that users trust SOTA CL models,
such as CBCL, that do not store and retrain on previous data similar to the
theoretical upper bound JT.

For the robot’s social attributes, warmth and discomfort scores stay reason-
ably low in all repeated sessions in a functional scenario with no extra social
cues added to the robot, and where the interaction with the robot happens
indirectly through the medium of a screen. The model choice (i.e. condition)
also does not influence the experienced discomfort or warmth of the robot,
making all equally good choices in terms of users’ perceptions of these social
attributes. This result was encouraging, showing that even a forgetful model
caused little discomfort to the users. However, competence is perceived as sig-
nificantly lower by the participants after interacting multiple times with a
robot that forgets (FT condition). In contrast, when using the CBCL and JT
approaches, competence is rated similarly as in the first session. Therefore, all
three hypotheses H1.2, H2.3, and H2.4 can be supported partially by our
data. For H2.3, a significant difference was seen only for competence, but not
for warmth and discomfort between the three conditions and over multiple ses-
sions. Results for discomfort are interesting because they indicate that users
feel little discomfort interacting with a continual learning robot even if the
robot’s performance decreases over multiple sessions. Thus, only the results for
competence are supported by the objective measure (classification accuracy)
of the experiment. Further, for H2.4, similar to the results for trust, there was
no difference for all three social attributes between CBCL and the theoretical
upper bound JT.

All three models had similarly low task load ratings, which is expected
for FT condition as the model is simple and it continues to forget previous
objects. However, even for more complex models that mitigate forgetting, par-
ticipants’ workload did not increase. Neither the accuracy of the model nor any
subsequent iterations have an effect on the task load and hence H2.5 cannot
be supported by our data. Similarly, both H1.3 and H2.6 are not supported
since we cannot find evidence that would support any difference between the
conditions with regard to task load. There is no correlation between the task
load and the model’s performance and the model choice. However, task load
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seems to be linked with the total number of images shown per object, as partic-
ipants for all three models showed only a few images per object. These results
are quite promising as they indicate the feasibility of personalized continual
learning robots that directly learn from their users. The results also suggest
that researchers might need to focus more on the task (and task load) than
the choice of the ML model alone when developing continual learning robots.

The experiment results suggest an effect of model choice on the system’s
usability in most sessions after the first sessions and therefore both H1.4 and
H2.8 are supported partially. While usability scores are similar among the
three approaches in the first session and partially in the second and third
sessions, they drop significantly in sessions 3, 4, and 5 only when the robot uses
the FT approach and is thus forgetting more frequently. The robot, however, is
perceived to be equally usable over repeated sessions with the CBCL and the
JT approaches. Therefore, H2.7 can only be supported partially. This result is
particularly interesting since usability is not directly linked to the classification
accuracy of the model. This result also shows that users find continual learning
robots to be useful even when the underlying model might forget previously
learned objects. This could be because some users might only care about the
robot’s performance on the new objects, as observed for some users in our
study that did not test the FT model on many old objects in the later sessions.
This might also explain the high variance in accuracy seen for the two models
for different participants. Therefore, CL researchers might need to not only
focus on developing optimal models but also focus on the needs and tendencies
of the participants when designing continual learning robots.

Finally, we observed that JT’s classification accuracy dropped by ∼ 15%
after the first two sessions, whereas CBCL’s accuracy remained consistent over
all sessions. This was surprising as JT is a theoretical upper bound and trains
on all the data from previous sessions, whereas CBCL only uses the data from
the current session. This could be because JT is originally designed to learn
from a large number of training images per object class, whereas CBCL can
learn from a few images per object class. Note that in the fifth session, the time
required for JT to learn new objects was ∼ 20− 30 seconds because it had to
retrain on the data on all the objects from the previous four sessions, whereas
CBCL required < 1 second to learn new objects even in the fifth session. This
was a promising result indicating that SOTA CL models that require much less
time to learn new objects can perform similarly to the theoretical upper bound
for continual learning when applied to real robots interacting with real users.
However, we observed that the classification accuracy of both CBCL and JT
was much lower (∼ 45− 60%) than when tested on static datasets or with the
experimenters (> 90%) [9, 15]. These results indicate that the performance
of the continual learning robots is quite different in the real world and it is
drastically affected by the teaching style of their users.
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7 Conclusions

In this work, we designed a long-term user study to understand human percep-
tions of a continual learning robot while teaching and testing the robot over
five sessions. We conducted a between-participant study with three CL models
and asked participants about their perceptions of the robot in terms of trust,
social attributes, task load, and usability of the system, after directly teaching
and testing the robot over five sessions. Our results indicate that users’ percep-
tions of trust, competence, and usability of the robot are negatively affected by
forgetting of the CL models. Our results also indicate that the performance of
even the SOTA CL models is unreliable (only ∼50% accuracy) when learning
from the users instead of learning on static datasets. Therefore, with the cur-
rent SOTA CL models, continual learning robots are not perceived to be very
trustworthy or competent by their users. However, an encouraging result was
that the performance of the SOTA CL models is comparable to the theoretical
upper bound for continual learning which takes a much longer time to learn
new objects. Furthermore, the task load for teaching and testing the continual
learning robot, and perceptions of warmth and discomfort stayed low and were
not affected by the choice of the CL model. These results are encouraging as
they indicate the potential feasibility of personalized continual learning robots
that might learn from their users over a long period of time. Our results also
indicate that future continual learning research should also focus on the task
load and the needs and tendencies of the users when designing CL models that
learn through human interactions.

Our user study is the first step toward testing machine learning-based CL
models in the realm of HRI. We hope that these results can help machine
learning and HRI researchers design CL models while considering the percep-
tions of human users that might interact with these systems over a long period
of time. Particularly, researchers need to focus on improving the performance
of the CL models when learning from human users, which might also improve
users’ perceptions of trust, competence, and usability of the continual learning
robots.

8 Limitations and Future Work

Although we used realistic household objects and allowed participants to bring
their own objects, the study was performed in a robotics lab and not in a
household environment. In the future, we plan to conduct a study in a smart
home with the same robot and the same learning models to determine if the
household environment affects user perceptions of the continual learning robot.
Further, we did not add any social cues to the robot, such as gaze or affective
expressions, which might affect users’ perceptions of the robot and promote
more human-robot engagement. This might even improve the performance of
the model through better teaching by the users. Furthermore, the available
mobile manipulator robot, Fetch, has a very ‘functional’ appearance, compared
to other highly expressive social robots. In the future, we hope to expand on
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this study and add social capabilities to the continual learning robot. Although
we conducted the first user study with a mix of expert and non-expert users,
they were all university students between the ages of 18 and 37 years. In the
future, we plan to conduct this study with older adults, who might be less
familiar with robots and technology in general, to understand the effectiveness
of continual learning robots for assistive applications. Finally, the study was
conducted with one particular robot and with two CL models. Expanding this
work in comparative studies involving more interactive and social robots with
other CL models can help us understand the larger design space of continual
learning robots and users’ perceptions of these robots.
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[72] Solanes, J.E., Muñoz, A., Gracia, L., Mart́ı, A., Girbés-Juan, V.,
Tornero, J.: Teleoperation of industrial robot manipulators based on
augmented reality. The International Journal of Advanced Manufac-
turing Technology 111(3-4), 1077–1097 (2020). https://doi.org/10.1007/
s00170-020-05997-1

[73] Louie, W.-Y.G., Nejat, G.: A social robot learning to facilitate an assistive
group-based activity from non-expert caregivers. International Journal
of Social Robotics 12(5), 1159–1176 (2020). https://doi.org/10.1007/
s12369-020-00621-4

[74] Schrum, M.L., Hedlund-Botti, E., Gombolay, M.C.: Towards Improv-
ing Life-Long Learning Via Personalized, Reciprocal Teaching. Workshop
on Lifelong Learning and Personalization in Long-Term Human-Robot
Interaction (LEAP-HRI), 17th ACM/IEEE International Conference on
Human-Robot Interaction (HRI) (2022)

[75] Liu, B.: Learning on the job: Online lifelong and continual learning.
Proceedings of the AAAI Conference on Artificial Intelligence 34(09),
13544–13549 (2020). https://doi.org/10.1609/aaai.v34i09.7079

[76] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang,
Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: Ima-
genet large scale visual recognition challenge. Int. J. Comput. Vision
115(3), 211–252 (2015)

[77] Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look
once: Unified, real-time object detection. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

[78] Hosang, J., Benenson, R., Schiele, B.: Learning non-maximum suppres-
sion. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (2017)

[79] Chai, J.Y., Gao, Q., She, L., Yang, S., Saba-Sadiya, S., Xu, G.: Lan-
guage to action: Towards interactive task learning with physical agents.
In: Proceedings of the Twenty-Seventh International Joint Conference
on Artificial Intelligence, IJCAI-18, pp. 2–9. International Joint Confer-
ences on Artificial Intelligence Organization, ??? (2018). https://doi.org/

https://doi.org/10.1109/ICRA.2019.8793988
https://doi.org/10.1007/s00170-020-05997-1
https://doi.org/10.1007/s00170-020-05997-1
https://doi.org/10.1007/s12369-020-00621-4
https://doi.org/10.1007/s12369-020-00621-4
https://doi.org/10.1609/aaai.v34i09.7079
https://doi.org/10.24963/ijcai.2018/1
https://doi.org/10.24963/ijcai.2018/1


Springer Nature 2021 LATEX template

Human Perceptions of a Continual Learning Robot 33

10.24963/ijcai.2018/1. https://doi.org/10.24963/ijcai.2018/1

[80] Qualtrics. https://www.qualtrics.com (2005)

[81] Madsen, M., Gregor, S.: Measuring human-computer trust. In: Proceed-
ings of the 11 Th Australasian Conference on Information Systems, pp.
6–8 (2000)

[82] Carpinella, C.M., Wyman, A.B., Perez, M.A., Stroessner, S.J.: The
Robotic Social Attributes Scale (RoSAS): Development and Valida-
tion. In: Proceedings of the 2017 ACM/IEEE International Confer-
ence on Human-Robot Interaction, pp. 254–262. ACM, Vienna Aus-
tria (2017). https://doi.org/10.1145/2909824.3020208. https://dl.acm.
org/doi/10.1145/2909824.3020208 Accessed 2022-09-29

[83] Hart, S.G.: Nasa-Task Load Index (NASA-TLX); 20 Years Later. Proceed-
ings of the Human Factors and Ergonomics Society Annual Meeting 50(9),
904–908 (2006). https://doi.org/10.1177/154193120605000909. Accessed
2022-09-29

[84] Brooke, J.: Sus: A quick and dirty usability scale. Usability Eval. Ind. 189
(1995)

[85] Shapiro, S.S., Wilk, M.B.: An analysis of variance test for normality
(complete samples). Biometrika 52(3/4), 591–611 (1965)

[86] Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics
Bulletin 1(6), 80–83 (1945). Accessed 2022-09-29

[87] Armstrong, R.A.: When to use the b onferroni correction. Ophthalmic
and Physiological Optics 34(5), 502–508 (2014)

Appendix A FT as a Baseline Approach for
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Fig. A1: The twenty-five objects used in our study. Note that the visual similarity
of some objects and their size variation make this a challenging task.

robot on old objects. Instead, they have flexibility regarding which objects to
test in each session. Results for FT (Section 5) show the effect of this flexibility.

Finally, if we chose a baseline that simply does not learn anything, that
would be a trivial comparison, since users would be expected to perceive this
model negatively. Another choice of a baseline model is to pre-train a model
on a set of objects. However, our study is not only about CL but also about
human-robot teaching in an unconstrained manner. In our study, users are
given high flexibility in teaching the objects. Particularly, users can name the
objects however they like, teach an object as many times as they like in a
session, and bring in a few of their own objects. In such an unconstrained
environment, it would be impossible to choose a baseline that is pre-trained
on some objects. For these reasons, we believe it is important to test the FT
model in our study as a baseline.

Appendix B Objects used in the Study

Figure A1 shows the twenty-five objects used in our study. We used realistic
objects from daily life with significant variations in size, color, and shape,
which made the object-learning task quite challenging. Participants taught
these objects in five sessions with five objects per session. Participants were
also allowed to bring objects of their own choice after the first two sessions. If
the participants brought their own objects, we used them to replace some of
the twenty-five objects. Overall, each participant taught twenty-five objects.

Appendix C Overall Results of the Study

Table C1 shows the overall statistics of the study across all 60 participants.
Tables C2, C5, C4, C3 show the overall results for the four questionnaires for
the three conditions across all 60 participants.
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Table C1: Overall results of the study irrespective of the CL model chosen.

Session 1 2 3 4 5
Value µ σ µ σ µ σ µ σ µ σ

Trust 2.81 0.86 2.68 0.88 2.31 0.89 2.29 0.88 2.29 0.92
Warm. 2.93 1.34 × × × × × × 2.71 1.36
Comp. 4.91 1.30 × × × × × × 4.14 1.39
Disc. 1.88 0.89 × × × × × × 1.98 0.91
TLX 26.5 9.63 25.7 11.4 26.8 12.2 27.6 13.4 27.5 14.3
SUS 74.4 16.8 72.9 17.1 68.9 15.5 67.9 18.8 67.5 16.3

Table C2: Detailed results for trust in the three conditions. NS stands for not
significant.

Session CBCL FT JT
Value µ σ µ σ µ σ

1 3.07 0.53 2.52 0.96 2.85 0.95
2 3.09 0.49 1.92 0.79 2.99 0.80
3 2.76 0.67 1.66 0.81 2.49 0.82
4 2.64 0.68 1.75 0.88 2.41 0.87
5 2.74 0.77 1.51 0.66 2.61 0.82
all 2.86 0.65 1.88 0.89 2.67 0.87

Session FT-CBCL CBCL-JT FT-JT
Value p W p W p W

1 0.0230 130 NS NS NS NS
2 3.3×10−5 42.5 NS NS 0.0003 316.5
3 0.0001 62.5 NS NS 0.0046 305
4 0.0030 83.5 NS NS 0.0369 240
5 6.3×10−5 56.5 NS NS 0.0001 354
all 2.2×10−14 1930.5 NS NS 3.5×10−9 7344
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Table C3: Detailed results for usability in the three conditions. NS stands for
not significant.

Session CBCL FT JT
Value µ σ µ σ µ σ

1 75.9 20.6 73.3 14.0 73.9 15.6
2 77.4 11.3 64.5 21.2 76.6 14.9
3 71.9 17.5 62.6 15.9 72 10.9
4 73.5 16.5 58.2 22.3 70.9 14.5
5 72.7 16.7 59.0 17.4 70.2 11.7
all 74.3 16.6 63.7 18.8 72.7 13.6

Session FT-CBCL CBCL-JT FT-JT
Value p W p W p W

1 NS NS NS NS NS NS
2 0.0386 130.5 NS NS NS NS
3 NS NS NS NS 0.0321 279.5
4 0.0353 114 NS NS 0.0442 237.5
5 0.0145 116 NS NS 0.02624 295.5
all 2.0×10−5 3441 NS NS 0.0002 6521

Table C4: Detailed results for task load in the three conditions. No statisti-
cally significant difference was seen for any condition, therefore p and W values
are not reported.

Session CBCL FT JT
Value µ σ µ σ µ σ

1 24.4 7.94 28.9 9.72 27.2 11.7
2 25.1 13.3 29.5 11.5 22.9 7.98
3 25.8 11.9 27.9 14.6 27.1 10.9
4 28.1 14.3 26.8 14.7 27.5 11.9
5 28.3 16.8 27.9 16.2 26.4 9.38
all 26.4 13.0 28.3 13.3 26.2 10.3
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Table C5: Detailed results for robot’s social attributes (warmth, competence,
discomfort) in the three conditions. NS stands for not significant.

Session CBCL FT JT
Value µ σ µ σ p W

Warmth
1 2.62 1.19 3.22 1.35 2.97 1.46
5 2.69 1.46 2.55 1.28 2.86 1.37
all 2.65 1.32 2.89 1.35 2.92 1.40

Competence
1 5.04 1.12 4.72 1.39 4.97 1.41
5 4.49 1.41 3.27 1.17 4.63 1.19
all 4.77 1.29 4.01 1.47 4.8 1.30

Discomfort
1 1.91 0.89 1.99 0.83 1.74 0.97
5 2.02 0.82 2.00 0.92 1.94 1.01
all 1.96 0.84 1.99 0.86 1.84 0.98

Session FT-CBCL CBCL-JT FT-JT
Value p W p W p W

Warmth
1 NS NS NS NS NS NS
5 NS NS NS NS NS NS
all NS NS NS NS NS NS

Competence
1 NS NS NS NS NS NS
5 0.0065 105.5 NS NS 0.0013 333.5
all 0.0132 604.5 NS NS 0.0155 1127

Discomfort
1 NS NS NS NS NS NS
5 NS NS NS NS NS NS
all NS NS NS NS NS NS
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